АДМИНИСТРАЦИЯ ЛОКТЕВСКОГО РАЙОНА АЛТАЙСКОГО КРАЯ

ПОСТАНОВЛЕНИЕ

20.06.2024		№ 258
	г.Горняк	

Об утверждении актуализированной схемы теплоснабжения МО Масальский сельсовет Локтевского района Алтайского края

В соответствии с Федеральными законами от 06.10.2003 № 131-ФЗ «Об общих принципах организации местного самоуправления в Российской Федерации», от 27.07.2010 № 190-ФЗ «О теплоснабжении», Постановлением Правительства Российской Федерации от 22.02.2012 № 154 «О требованиях к схемам теплоснабжения, порядку их разработки и утверждения», руководствуясь Уставом муниципального образования Локтевского района, постановляю:

- 1. Утвердить актуализированную, по состоянию на 2025 год, схему теплоснабжения муниципального образования Масальский сельсовет Локтевского района Алтайского края (приложение).
- 2. Разместить настоящее постановление на официальном сайте муниципального образования Локтевского района Алтайского края.
 - 3. Контроль за исполнением настоящего постановления оставляю за собой.

И.о. главы района	С.В. Чичики
И.о. главы района	С.В. Чичик

Подготовил:	М.П.Зилинская
Согласовано:	юр.отдел

СХЕМА ТЕПЛОСНАБЖЕНИЯ МУНИЦИПАЛЬНОГО ОБРАЗОВАНИЯ МАСАЛЬСКИЙ СЕЛЬСОВЕТ ЛОКТЕВСКОГО РАЙОНА АЛТАЙСКОГО КРАЯ НА ПЕРИОД С 2018 ГОДА ДО 2031 ГОДА

Содержание

№ п/п	Наименование раздела	Стр.
ВВЕДЕН	ИЕ	5
	Общая часть	7
1	Глава 1 Существующее положение в сфере производства, передачи и потребления тепловой энергии для целей теплоснабжения	7
1.1	Функциональная структура теплоснабжения	7
1.2	Источники тепловой энергии	8
1.3	Тепловые сети, сооружения на них и тепловые пункты	14
1.4	Диагностика и ремонты тепловых сетей	22
1.5	Анализ нормативных и фактических потерь тепловой энергии и теплоносителя	23
1.6	Предписания надзорных органов по запрещению дальнейшей эксплуатации участков тепловой сети	24
1.7	Описание основных схем присоединения потребителей к тепловым сетям	24
1.8	Наличие коммерческих приборов учёта тепловой энергии и теплоносителя	24
1.9	Анализ работы диспетчерской службы теплоснабжающей организации	24
1.10	Уровень автоматизации центральных тепловых пунктов и насосных станций	24
1.11	Гидравлические режимы, обеспечивающие передачу тепловой энергии от источника тепловой энергии до самого удалённого потребителя и характеризующие существующие возможности (резервы и дефициты по пропускной способности) передачи тепловой энергии от источника к потребителю	24
1.12	Балансы теплоносителя	36
1.13	Топливные балансы источников тепловой энергии и система обеспечения топливом	36
1.14	Надёжность теплоснабжения	37
1.15	Цены (тарифы) в сфере теплоснабжения	41
1.16	Описание существующих технических и технологических проблем в системах теплоснабжения поселения	42
2	Глава 2 Перспективное потребление тепловой энергии на цели теплоснабжения	44
2.1	Данные базового уровня потребления тепла на цели теплоснабжения	44
2.2	Прогноз приростов на каждом этапе площади строительных фондов на период до 2031 года с разделением объектов строительства на многоквартирные дома, жилые дома, общественные здания	44
3	Глава 3 Перспективные балансы тепловой мощности источников тепловой энергии и тепловой нагрузки	45

		T
4	Глава 4 Перспективные балансы производительности водоподготовительных установок и максимального потребления теплоносителя теплопотребляющими установками потребителей, в том числе в аварийных режимах	45
4.1	Определение нормативов технологических потерь и затрат теплоносителей	45
5	Глава 5 Предложения по строительству, реконструкции и техническому перевооружению источников тепловой энергии	53
5.1	Определение условий организации централизованного теплоснабжения, индивидуального теплоснабжения, а также поквартирного отопления	53
5.2	Обоснование предлагаемых для строительства источников тепловой энергии с комбинированной выработкой тепловой и электрической энергии для обеспечения перспективных тепловых нагрузок	55
5.3	Расчёт радиусов эффективного теплоснабжения (зоны действия источников тепловой энергии) в каждой из систем теплоснабжения, позволяющих определить условия, при которых подключение теплопотребляющих установок к системе теплоснабжения нецелесообразно вследствие увеличения совокупных расходов в указанной системе	56
6	Глава 6 Предложения по строительству и реконструкции тепловых сетей и сооружений на них	64
6.1	Реконструкция и строительство тепловых сетей, обеспечивающих перераспределение тепловой нагрузки из зон с дефицитом тепловой мощности в зоны с избытком тепловой мощности (использование существующих резервов)	66
6.2	Строительство или реконструкция тепловых сетей для повышения эффективности функционирования системы теплоснабжения, в том числе за счёт перевода котельных в пиковый режим работы или ликвидации котельных	66
6.3	Строительство тепловых сетей для обеспечения нормативной надёжности теплоснабжения	66
6.4	Реконструкция тепловых сетей с увеличением диаметра трубопроводов для обеспечения перспективных приростов тепловой нагрузки	66
6.5	Реконструкция тепловых сетей, подлежащих замене в связи с исчерпанием эксплуатационного ресурса	66
6.6	Строительство и реконструкция насосных станций	67
7	Глава 7 Оценка надёжности теплоснабжения	68
7.1	Сценарий развития аварий в системах теплоснабжения с моделированием гидравлических режимов таких систем, в том числе при отказе элементов тепловых сетей и при аварийных режимах работы систем теплоснабжения связанных с прекращением подачи тепловой энергии	74
8	Глава 8 Обоснование предложения по определению единой теплоснабжающей организации	74
	Библиография	77
	Зоны действия систем теплоснабжения на территории Масальского сельсовета Локтевского района Алтайского края	78

Введение

теплоснабжения муниципального образования Схема (MO) сельсовет Локтевского района Алтайского края на период до 2031 года разработана на основании технического задания в соответствии с Постановлением Правительства Российской Федерации от 22.02.2012 г. № 154 "О требованиях к схемам порядку их разработки и утверждения" теплоснабжения, и "Методическими рекомендациями по разработке схемы теплоснабжения", утверждёнными совместным приказом Минэнерго и Минрегиона РФ. Базовым годом для разработки схемы разработке схемы теплоснабжения является 2016 г. При теплоснабжения использованы:

- документация по источникам тепловой энергии, данные технологического и коммерческого учёта потребления топлива, отпуска и потребления тепловой энергии, теплоносителя, конструктивные данные по сетям, эксплуатационная документация, документы по финансовой и хозяйственной деятельности, статистическая отчётность.

В работе используются следующие понятия и определения:

"Схема теплоснабжения" - документ, содержащий предпроектные материалы по обоснованию эффективного и безопасного функционирования системы теплоснабжения, её развития с учётом правового регулирования в области энергосбережения и повышения энергетической эффективности;

"Система теплоснабжения" - совокупность взаимосвязанных источников теплоты, тепловых сетей и систем теплопотребления;

"Расчётный элемент территориального деления" - территория поселения, городского округа или её часть, принятая для целей разработки схемы теплоснабжения в неизменяемых границах на весь срок действия схемы теплоснабжения;

"Единая теплоснабжающая организация" в системе теплоснабжения - теплоснабжающая организация, которая определяется в схеме теплоснабжения органом местного самоуправления на основании критериев и в порядке, которые установлены правилами организации теплоснабжения, утверждёнными Правительством Российской Федерации;

"Тепловая энергия" - энергетический ресурс, при потреблении которого изменяются термодинамические параметры теплоносителей (температура, давление);

"Качество теплоснабжения" - совокупность установленных нормативными правовыми актами Российской Федерации и (или) договором теплоснабжения характеристик теплоснабжения, в том числе термодинамических параметров теплоносителя;

"Источник тепловой энергии (теплоты)" - устройство, предназначенное для производства тепловой энергии;

"Теплопотребляющая установка" - устройство, предназначенное для использования тепловой энергии, теплоносителя для нужд потребителя тепловой энергии;

"Тепловая сеть" - совокупность устройств (включая центральные тепловые пункты, насосные станции), предназначенных для передачи тепловой энергии, теплоносителя от источников тепловой энергии до теплопотребляющих установок;

"Котёл водогрейный" - устройство, в топке которого сжигается топливо, а теплота сгорания используется для нагрева воды, находящейся под давлением выше атмосферного и используемой в качестве теплоносителя вне этого устройства;

"Котёл паровой" - устройство, в топке которого сжигается топливо, а теплота сгорания используется для производства водяного пара с давлением выше атмосферного, используемого вне этого устройства;

"Индивидуальный тепловой пункт" - тепловой пункт, предназначенный для присоединения систем теплопотребления одного здания или его части;

"Центральный тепловой пункт" - тепловой пункт, предназначенный для присоединения систем теплопотребления двух и более зданий;

"Котельная" - комплекс технологически связанных тепловых энергоустановок, расположенных в обособленных производственных зданиях, встроенных, пристроенных или надстроенных помещениях с котлами, водонагревателями (в т. ч. установками нетрадиционного способа получения тепловой энергии) и котельновспомогательным оборудованием, предназначенный для выработки теплоты;

"Зона действия системы теплоснабжения" - территория поселения, городского округа или её часть, границы которой устанавливаются по наиболее удалённым точкам подключения потребителей к тепловым сетям, входящим в систему теплоснабжения;

"Зона действия источника тепловой энергии" - территория поселения, городского округа или её часть, границы которой устанавливаются закрытыми секционирующими задвижками тепловой сети системы теплоснабжения;

"Тепловая мощность (далее - мощность)" - количество тепловой энергии, которое может быть произведено и (или) передано по тепловым сетям за единицу времени;

"Тепловая нагрузка" - количество тепловой энергии, которое может быть принято потребителем тепловой энергии за единицу времени;

"Установленная мощность источника тепловой энергии" - сумма номинальных тепловых мощностей всего принятого по акту ввода в эксплуатацию оборудования, предназначенного для отпуска тепловой энергии потребителям на собственные и хозяйственные нужды;

"Располагаемая мощность источника тепловой энергии" - величина, равная установленной мощности источника тепловой энергии за вычетом объёмов мощности, не реализуемой по техническим причинам, в том числе по причине снижения тепловой мощности оборудования в результате эксплуатации на продлённом техническом ресурсе (снижение параметров пара перед турбиной, отсутствие рециркуляции в пиковых водогрейных котлоагрегатах и др.);

"Мощность источника тепловой энергии нетто" - величина, равная располагаемой мощности источника тепловой энергии за вычетом тепловой нагрузки на собственные и хозяйственные нужды;

"Пиковый" режим работы источника тепловой энергии - режим работы источника тепловой энергии с переменной мощностью для обеспечения изменяющегося уровня потребления тепловой энергии, теплоносителя потребителями;

"Топливно-энергетический баланс" - документ, содержащий взаимосвязанные показатели количественного соответствия поставок энергетических ресурсов на территорию муниципального образования и их потребления, устанавливающий распределение энергетических ресурсов между системами теплоснабжения, потребителями, группами потребителей и позволяющий определить эффективность использования энергетических ресурсов;

"Потребитель тепловой энергии (далее также - потребитель)" - лицо, приобретающее тепловую энергию (мощность), теплоноситель для использования на принадлежащих ему на праве собственности или ином законном основании теплопотребляющих установках либо для оказания коммунальных услуг в части горячего водоснабжения и отопления;

"Теплосетевые объекты" - объекты, входящие в состав тепловой сети и обеспечивающие передачу тепловой энергии от источника тепловой энергии до теплопотребляющих установок потребителей тепловой энергии;

"Радиус эффективного теплоснабжения" - максимальное расстояние от теплопотребляющей установки до ближайшего источника тепловой энергии в системе теплоснабжения, при превышении которого подключение теплопотребляющей установки к данной системе теплоснабжения нецелесообразно по причине увеличения совокупных расходов в системе теплоснабжения;

"Элемент территориального деления" - территория поселения, городского округа или её часть, установленная по границам административнотерриториальных единиц;

"Показатель энергоэффективности" - абсолютная или удельная величина

потребления или потери энергоресурсов, установленная государственными стандартами и (или) иными нормативными техническими документами;

"Возобновляемые источники энергии" - энергия солнца, энергия ветра, энергия вод (в том числе энергия сточных вод), за исключением случаев использования такой энергии на гидроаккумулирующих электроэнергетических станциях, энергия приливов, энергия волн водных объектов, в том числе водоёмов, рек, морей, океанов, геотермальная энергия с использованием природных подземных теплоносителей, низкопотенциальная тепловая энергия земли, воздуха, воды с использованием специальных теплоносителей, биомасса, включающая в себя специально выращенные для получения энергии растения, в том числе деревья, а также отходы производства и потребления, за исключением отходов, полученных в процессе использования углеводородного сырья и топлива, биогаз, газ, выделяемый отходами производства и потребления на свалках таких отходов, газ, образующийся на угольных разработках;

"Режим потребления тепловой энергии" - процесс потребления тепловой энергии, теплоносителя с соблюдением потребителем тепловой энергии обязательных характеристик этого процесса в соответствии с нормативными правовыми актами, в том числе техническими регламентами, и условиями договора теплоснабжения;

"Базовый" режим работы источника тепловой энергии" - режим работы источника тепловой энергии, который характеризуется стабильностью функционирования основного оборудования (котлов, турбин) и используется для обеспечения постоянного уровня потребления тепловой энергии, теплоносителя потребителями при максимальной энергетической эффективности функционирования такого источника;

"Пиковый" режим работы источника тепловой энергии" - режим работы источника тепловой энергии с переменной мощностью для обеспечения изменяющегося уровня потребления тепловой энергии, теплоносителя потребителями;

"Надёжность теплоснабжения" - характеристика состояния системы теплоснабжения, при котором обеспечиваются качество и безопасность теплоснабжения;

"Живучесть" - способность источников тепловой энергии, тепловых сетей и системы теплоснабжения в целом сохранять свою работоспособность в аварийных ситуациях, а также после длительных (более пятидесяти четырёх часов) остановок;

"Инвестиционная программа" организации, осуществляющей регулируемые виды деятельности в сфере теплоснабжения, - программа финансирования мероприятий организации, осуществляющей регулируемые виды деятельности в сфере теплоснабжения, по строительству, капитальному ремонту, реконструкции и (или) модернизации источников тепловой энергии и (или) тепловых сетей в целях развития, повышения надёжности и энергетической эффективности системы теплоснабжения, подключения теплопотребляющих установок потребителей тепловой энергии к системе теплоснабжения.

1 Общая часть

Масальский сельсовет - муниципальное образование (сельское поселение) в Локтевском районе Алтайского края. Административный центр сельсовета, посёлок Масальский, расположен в 31,0 км к юго-востоку от районного центра - города Горняк и в 360,0 км к юго-западу от краевого центра

- города Барнаул. В состав сельского поселения входят следующие три населённых пункта: посёлок Масальский, село Антошиха, село Кучеровка. Территория Масальского сельсовета занимает 177,79 км².

Масальский сельсовет расположен на территории Алтайского края в юговосточной части Локтевского района и граничит с Кировским сельсоветом на севере, на западе - Самарским сельсоветом, Золотухинским сельсоветом - на юго-западе и юге, на юго-западе и юге - Ермошихинским сельсоветом, Третьяковским районом - на юго-востоке, востоке и северо-востоке, Второкаменским сельсоветом - на северо-востоке и севере. Земли МО Масальский сельсовет имеют единую административную,

социальную систему обслуживания, транспортную и инженерную инфраструктуру, а также единую градостроительную структуру.

Локтевский район расположен в юго-западной части Алтайского края. Граничит с Рубцовским районом на севере и северо-западе, на западе, юго- западе и юге - Республикой Казахстан, Третьяковским районом - на юго- востоке и востоке, на северовостоке - Змеиногорским районом. Район включает в себя 27 населённых пунктов в составе 17 сельских и 1 городского поселения и имеет общую площадь 2340,00 км².

Таблица 1 - Основные технико-экономические показатели Масальского сельсовета

CELIBCOBETA			
Наименование показателя	Единица	Современное	Расчётный
	измерения	состояние	срок
1 ТЕРРИТОРИЯ			
Общая площадь территории в границах поселения	2тыс. м	177790,000	177790,000
2 НАСЕЛЕНИЕ			
Общая численность населения	чел.	2013	2218
3 ЖИЛИЩНЫЙ ФОНД			
Жилищный фонд всего, в т.ч.:	2тыс. м	44,700	48,400
- убыль жилищного фонда	2тыс. м	-	-
- существующий сохраняемый жилищный фонд (реконструируемый)	2тыс. м	44,700	45933,333
- средняя обеспеченность населения общей площадью квартир	м ² / чел.	22,21	21,82
- новое жилищное строительство	2тыс. м	-	2,467
4 ИНЖЕНЕРНАЯ ИНФРАСТРУКТУРА			
Расчетная температура наружного воздуха для проектирования отопления и	°C	—35	 35
Средняя температура отопительного	°C	 7,90	— 7,90
периода Продолжительность отопительного периода	Ч	4944	4944

Локтевской район, расположенный в юго-западной части Алтайского края, характерен недосаточно неустойчиво увлажнённым климатом с проявлением резко континентального характера.

Температурный режим характеризуется большой амплитудой колебания температур в течение года.

Среднегодовая температура воздуха +2,8 °C. Средняя температура января

— 16,2°C, июля +20,6°C. Абсолютный минимум температуры, зафиксированный в 1967 г., составляет —44°C, абсолютный максимум +41 °C.

Отопительный период составляет 206 дней (принят согласно СНиП 2301-99* (СП 131.13330.2012 «Строительная климатология» Актуализированная версия) по г. Рубцовск).

Преобладающее направление ветров — южное, юго-западное. В среднем в год выпадает около 343 мм осадков.

Глава 1 Существующее положение в сфере производства, передачи и потребления тепловой энергии для целей теплоснабжения

Разработка "Существующее положение в сфере производства, передачи и потребления тепловой энергии для целей теплоснабжения" обосновывающих материалов к схеме теплоснабжения выполнено в соответствии с пунктом 19 "Требований к схемам теплоснабжения, порядку их разработки и утверждения". Основной целью разработки главы 1 обосновывающих материалов в схеме теплоснабжения является определение базовых (на момент разработки схемы теплоснабжения) значений целевых показателей эффективности систем теплоснабжения поселения.

1.1 Функциональная структура теплоснабжения

В настоящее время на территории МО Масальский сельсовет Локтевского района Алтайского края осуществляется централизованное теплоснабжение.

Централизованное теплоснабжение объектов МО Масальский сельсовет Локтевского района Алтайского края осуществляется от сетей теплоснабжающего предприятия МБУ «ЖКХ». В управлении предприятия на основании договора аренды муниципального имущества на территории МО находится одна котельная, которая обслуживает объекты общественного и коммерческого назначения (административные здания, офисы различных организаций; общественные организации; банки и отделения банков; адвокатские конторы, юридические консультации, нотариалные конторы; отделения и пункты полиции; отделения связи, почтовые отделения; гостиницы, мотели, центры обслуживания туристов; магазины, торговые комплексы, киоски; фирмы по предоставлению услуг сотовой связи, агенства по предоставлению сервисных услуг; культовые сооружения), социального и коммунально-бытового назначения (дошкольные общеобразовательные сооружения, начальные и средние общеобразовательные учреждения; дворцы творчества; библиотеки; дома культуры, спортивные залы; амбулаторно-поликлинические отделения, клубы; профилактические отделения, больницы, аптеки, фельдшерско-акушерские пункты и т. многоквартирный одноэтажный и многоэтажный жилой фонд, индивидуальную усадебную жилую застройку. Основная часть индивидуальной усадебной жилой застройки снабжается теплом от автономных индивидуальных источников тепловой энергии (печи, камины, котлы на газообразном и твёрдом видах топлива).

Система централизованного горячего водоснабжения на территории МО отсутствует.

На территории Масальского сельсовета как производство, так и передачу тепловой энергии осуществляет единственная эксплуатирующая организация - МБУ «ЖКХ».

С потребителем расчёт ведётся по расчётным значениям теплопотребления либо по приборам учёта.

Отношения между снабжающими и потребляющими организациями договорные.

Схема расположения существующих источников тепловой энергии а также зоны их действия представлены в приложениях А, Б.

1.1.1 Описание эксплуатационных зон действия теплоснабжающих и теплосетевых организаций

Зона действия МБУ «ЖКХ» охватывает территорию посёлка Масальский Масальского сельсовета Локтевского района Алтайского края. На территории МО централизованное теплоснабжение осуществляется от одной локальной котельной, работающей на угле.

Потребителями тепла являются объекты общественного и коммерческого назначения, социального и коммунально-бытового назначения (иначе объекты общественно-делового назначения (ОДН)), многоквартирный одноэтажный и

многоэтажный жилой фонд, а также индивидуальная усадебная жилая застройка. Основная часть индивидуальной усадебной жилой застройки снабжается теплом от автономных индивидуальных источников тепла (печи, камины, котлы на газообразном и твёрдом видах топлива). Для обеспечения горячего водоснабжения предусмотрена установка бытовых электронагревателей (водонагревателей).

Подача тепла от источников теплоснабжения осуществляется по тепловым сетям, выполненным из стальных труб. Суммарная протяжённость сетей составляет 2578,08 м. Трубопроводы тепловых сетей проложены как надземным, так и бесканальным подземным способами.

Распределение обеспечения централизованным теплоснабжением потребителей МО представлено на рисунке 2.1.1. Как видно из рисунка, основным и единственным теплоснабжающим предприятием на территории Масальского сельсовета Локтевского района Алтайского края является МБУ «ЖКХ».

1.1.2 Зоны действия производственных котельных

Производственыые предприятия на территории Масальского сельсовета Локтевского Района Алтайского края представлены следующими промышленными предприятиями: ООО «Масальская дробильно-сортировочная станция», ОАО «Масальский завод ЖБИ». Исходные данные по перечню и характеристикам отопительных, производственных и производственноотопительных источников, тепловых сетей этих источников отсутствуют. Таким образом, текущий раздел не может быть разработан. Разработка раздела необходима и возможна при очередной актуализации схемы теплоснабжения.

1.1.3 Зоны действия индивидуального теплоснабжения

Зоны действия индивидуального теплоснабжения в МО сформированы согласно исторически сложившимся на территории села микрорайонам усадебной застройки. Данные строения, как правило, не присоединены к системе централизованного теплоснабжения и снабжаются теплом посредством автономных индивидуальных отопительных и водонагревательных систем, работающих на твёрдом топливе, сжиженном газе и электричестве (котлов, каминов либо посредством печного отопления). Количество зон индивидуального теплоснабжения, расположенных на территории сельсовета, равно количеству строений с индивидуальным теплоснабжением.

1.1.4 Карта-схема поселения с делением на зоны действия

Карта-схема поселения с делением на зоны действия централизованного и индивидуального теплоснабжения представлена в приложении A.

На карте отображены зоны действия конкретной системы теплоснабжения: розовым цветом () выделены зоны действия централизованного теплоснабжения на территории Масальского сельсовета, а жёлтым () - индивидуального.

- 1.2 Источники тепловой энергии
- 1.2.1 Структура основного оборудования источников тепловой энергии.

Параметры установленной тепловой мощности теплофикационного оборудования

Описание источников тепловой энергии основано на данных, переданных разработчику схемы теплоснабжения по запросам заказчика схемы теплоснабжения в адрес теплоснабжающей организации МБУ «ЖКХ», действующей на территории Масальского сельсовета Локтевского района Алтайского края.

Согласно данным заказчика схемы теплоснабжения МБУ «ЖКХ» на территории посёлка Масальский эксплуатирует одну котельную, расположенную по адресу ул. Советская, 7, с наружными тепловыми сетями. Котельная является единственным источником централизованного теплоснабжения на территории МО. Данные о составе и технических характеристиках оборудования индивидуального теплоснабжения не предоставлены.

На котельной, п. Масальский МБУ «ЖКХ» установлены один водогрейный

котлоагрегат марки НР-18 с общей установленной тепловой мощностью 0,46 Гкал/час, один КВр-1,25 МВт КБ с общей установленной тепловой мощностью 1,08 Гкал/час, один КВр-1,5 МВт КБ с общей установленной тепловой мощностью 1,29 Гкал/час. Рабочая температура теплоносителя на отопление 95/70 °C.

На источник тепловой энергии исходная вода поступает из хозяйственнопитьевого водопровода. Для подготовки исходной и подпиточной воды на котельной используется установка химической водоподготовки «Комплексон- 6».

Регулирование температуры сетевой воды, поступающей в теплосеть, производится изменением расхода топлива в зависимости от температуры наружного воздуха.

Котельная функционирует только В отопительный период. Система централизованного горячего водоснабжения на территории населённого пункта отсутствует.

Принципиальные тепловые схемы котельной, п. Масальский МБУ «ЖКХ», расположенной на территории МО Масальский сельсовет Локтевского района Алтайского края, отсутствуют.

Распределение тепловой нагрузки представлено на рисунке 2.2.1.

Таблица 2.2.1.1 - Основные характеристики котельных теплоснабжающих

организаций МО Масальский сельсовет Поктевского района Алтайского края

рганизации мо масальский сельсовет локтевского района Алтайского края							
Марка котлов	Производительность котлов по паспортным данным, Гкал/час	Год ввода котлов в эксплуатацацию	Год последнего капитального ремонта	КПД котлов по паспортным данным, %	КПД факт	Год проведения РНИ	Основное топливо
		Котельная	я, п. Масал	ТЬСКИЙ			
HP-18	0,46	-	2018	60,00	59,90	2018	
КВр-1,25МВтКБ	1,08	2019	_	78,5	78,5	2019	Уголь
							каменный
КВр-1,5 МВт	1,29	2020	-	79,5	79,5	2020	
DILIA	•	•	•	•			

где РНИ - режимно-наладочные испытания.

Таблица 2.2.1.2 - Установленные, располагаемые мощности и присоединённые

нагрузки котельных

Наименование источника	УТМ,	PTM,	Присоединённая тепловая нагрузка,			
тепловой энергии	Гкал/час	Гкал/час	Гкал/час			
			Всего Отопл. Вент. ГВС			
Котельная, п. Масальский	2,83	2,83	0,6513	0,6513	_	_
Итого	2,83	2,83	0,6513	0,6513	_	_

где н/д - нет исходных данных;

ГВС - горячее водоснабжение;

УТМ - установленная мощность источника тепловой энергии - сумма номинальных тепловых мощностей всего принятого по акту ввода в эксплуатацию

оборудования, предназначенного для отпуска тепловой энергии потребителям на собственные и хозяйственные нужды;

РТМ - располагаемая мощность источника тепловой энергии - величина, равная установленной мощности источника тепловой энергии за вычетом объёмов мощности, не реализуемой по техническим причинам, в том числе по причине снижения тепловой мощности оборудования в результате эксплуатации на продлённом техническом ресурсе.

Так как не определён остаточный ресурс при освидетельствовании оборудования (в теплоснабжающей организации не проведены работы по определению технического состояния систем теплоснабжения - освидетельствование не проводилось), располагаемая мощность источников тепловой энергии принята равной установленной мощности.

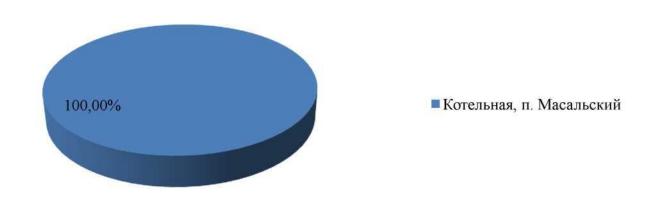


Рисунок 2.2.1 - Распределение тепловой нагрузки по источникам теплоснабжения

1.2.2 Ограничения тепловой мощности и параметры располагаемой тепловой мощности

При определении значений тепловой мощности источников тепловой энергии в базовом периоде должны быть учтены все существующие ограничения на установленную мощность.

В таблицах, представленных ниже, приведены установленная и располагаемая мощности котлов на котельных МБУ «ЖКХ».

Таблица 2.2.2 - Установленная и располагаемая мощность котлов на котельной, п. Масальский

Марка котла	Теплоноситель	Установленная тепловая мощность котла по паспорту, Гкал/час	Располагаемая мощность котла, Гкал/час	Год ввода котла в эксплуатацию	Год последнего капитального ремонта	КПД котла по результатам РНИ, %	Год проведения РНИ
HP-18	вода	0,46	0,46	-	2018	59,90	2018
KBp-1,25	вода	1,08	1,08	2019	-	78,5	2019
КВр-1,5	вода	1,29	1,29	2020	-	79,5	2020
Итого по кот	ельной:	2,83	2,83	-			

Для определения ограничений тепловой мощности котельного оборудования режимно-наладочные необходимо провести испытания ПО программе, предусматривающей также и выявление причин и величин ограничений. Результаты испытаний возможно необходимо использовать при техническом освидетельствовании основного оборудования котельных с определением остаточного ресурса и мер по его продлению.

Согласно предоставленным данным режимно-наладочные испытания на котельных МБУ «ЖКХ» на территории Масальского сельсовета Локтевского района Алтайского края были проведены в 2017 году. Согласно проведённым испытаниям располагаемая тепловая мощность принята равной установленной. Таким образом, ограничений тепловой мощности на котельных ТСО не выявлено.

1.2.3 Срок ввода в эксплуатацию теплофикационного оборудования, год последнего освидетельствования при допуске к эксплуатации после ремонтов, год продления ресурса и мероприятия по продлению ресурса

Данные по годам ввода в эксплуатацию котельного оборудования отсутствуют, предоставлены данные по годам последнего капитального ремонта. Как видно из рисунка 2.2.3, последний капитальный ремонт приходится на два периода: 2012 г., в течение которого было введено 66,67%, а в период 2014 г. - 33,33% всей располагаемой мощности.

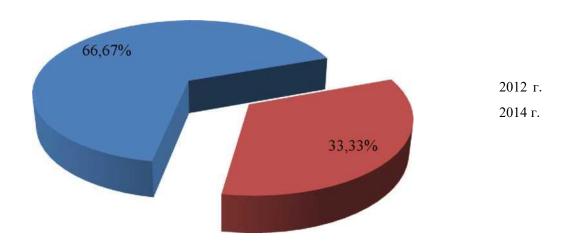


Таблица 2.2.3 - Средневзвешенный срок службы котлоагрегатов котельной, п. Масальский

Марка	Год ввода	Год проведения	Год	Год	Срок	
котлоагрегата		последнего		продл.	эксплуатации	
'		капитального	освид. ресурса		, ,	
		ремонта				
HP-18	-	2018	-	2020	2	
KBp-1,25	2019	-	-	2021	10	
KBp-1,5	2020	-	-	2022	10	
					7,3	
Сре	Средневзвешенный срок службы, лет					

соответствии С Правилами технической эксплуатации тепловых энергоустановок (п. 2.6 Технический контроль за состоянием тепловых энергоустановок) в 2022 году необходимо провести техническое освидетельствование основного оборудования котельных с определением остаточного ресурса и мер, необходимых для обеспечения расчётного ресурса или продления сроков его службы.

1.2.3 Способ регулирования отпуска тепловой энергии от источников тепловой энергии с обоснованием выбора графика изменения температур теплоносителя

Регулирование отпуска тепловой энергии потребителям осуществляется централизованно непосредственно на котельных. Метод регулирования качественный. Схема присоединения систем отопления всех потребителей зависимая. Утверждённый температурный график отпуска тепла в тепловую сеть из котельных 95/70 °C.

1.2.4 Схемы выдачи тепловой мощности котельных

Отпуск тепла осуществляется следующим образом: обратная сетевая вода от потребителей поступает в котельную, сетевыми насосами подаётся в котлы, где подогревается и подаётся потребителю, то есть в наличии имеется один контур теплоносителя, который циркулирует по схеме: котёл - тепловые сети - системы теплопотребления абонентов. Восполнение утечек производится за счёт воды из водопроводной сети без обработки.

1.2.5 Среднегодовая загрузка оборудования

В таблице 2.2.6 представлены средние за год значения числа часов работы котельных МБУ «ЖКХ».

Согласно таблице 2.2.6 среднегодовая загрузка основного топливоиспользующего оборудования котельных МБУ «ЖКХ» составляет 43,84%.

Таблица 2.2.6 - Среднегодовая загрузка оборудования

таолица 2.2.0 - Среднегод	таолица 2.2.0 - Среднегодовая загрузка оборудования						
Наименование источника	уТМ,	Выработка	Число часов	Коэффициент			
тепловой энергии	Гкал/час	тепловой	работы	использования			
		энергии	котельной, ч	тепловой			
		котлами,		мощности			
		Гкал					
Котельная, п. Масальский	2,83	2995,7	4944	0,4384			
Итого	2,83	2995,7	4944	0,4384			
Итого	2,83	2995,7	4944	0,4384			

1.2.6 Способы учёта тепла, отпущенного в тепловые сети

Основным способом учёта тепла, отпущенного в тепловые сети, является расчётный способ по фактическому расходу топлива и его характеристике.

Узлы (приборы) учёта тепловой энергии согласно данным на выводах из котельных отсутствуют (не установлены), поэтому нет возможности корректно определить фактические потери в тепловых сетях, а также провести эффективную

наладку и регулировку отпуска тепла по сетям.

1.2.7 Статистика отказов и восстановлений оборудования источников тепловой энергии

Аварии на источниках тепловой энергии МБУ «ЖКХ» в 2012 - 2021 годах, приведшие к человеческим жертвам, отсутствуют. Отказы оборудования источников тепловой энергии в 2012 - 2021 годах, приведшие к длительному прекращению отпуска тепла внешним потребителям, также отсутствуют.

1.2.8 Объём потребления тепловой мощности на собственные и хозяйственные нужды

Таблица 2.2.9 - Потребляемая тепловая мощность нетто на собственные и хозяйственные нужды

жезлиетвенные нужды					
Величина	2017	2018	2019	2020	2021
Котельная, п. Масальский	<u> </u>	<u> </u>		<u> </u>	
Установленная тепловая мощность, Гкап/час	1,38	1,38	1,54	1,54	2,83
Собственные нужды, <i>Гкал/час</i>	0,0333	0,0333	0,0333	0,0333	0,0333
Хозяйственные нужды (ГВС и отопление собственных зданий)	-	-	-	-	-
Тепловая мощность нетто, <i>Гкал/час</i>	1,3467	1,3467	1,51	1,51	2,7967

1.2.9 Предписания надзорных органов по запрещению дальнейшей эксплуатации источников тепловой энергии

В 2012 - 2021 годах предписаний надзорных органов по запрещению дальнейшей эксплуатации оборудования источников тепловой энергии не выдавалось.

1.2.10 Оценка топливной экономичности работы котельной

Для оценки топливной экономичности работы котельных были получены следующие данные: средневзвешенное значение КПД брутто котельных, расчётное значение КПД котельных за вычетом собственных нужд.

Таблица 2.2.11.1 - Потребление топлива и отпуск тепловой энергии

Год	2017	2018	2019	2020	2021
Уголь, <i>т</i>	957,2	858,0	835,2	828	1060,5
Выработано тепловой энергии, Гкал/ год	2517,1	2956,17	2797,3	2773,0	2995,7
Отпущено тепловой энергии, Гкал/год	2437,2	2926,75	1448,3	1400,0	1506,7

На основании указанных выше исходных данных были рассчитаны значения удельных расходов топлива на выработку тепловой энергии (соответствует КПД брутто расчётному), удельных расходов на отпуск тепловой энергии (соответствует КПД нетто расчётному) и фактических удельных расходов топлива на отпуск тепловой энергии (на основании данных о потреблении топлива и отпуске тепловой энергии).

Удельный расход условного топлива (УРУТ) на выработку тепловой энергии, УРУТ на отпуск тепловой энергии, удельные расходы электроэнергии теплоносителя на отпуск тепловой энергии, коэффициент использования установленной тепловой мощности котельных представлены в таблице 2.2.11.2.

Коэффициент использования установленной тепловой мощности котельной вычисляется по формуле

 $K = N_{ebip} / N_{max}$

где: N_{выр} - тепловая производительность котельной в текущем году,Гкал;

N_{max} - максимально возможная производительность котельной,Гкал.

Таблица 2.2.11.2 - Целевые показатели котельной, п. Масальский

таолица 2.2.11.2 - целевые по	оказатели коте	ельнои, г	1. Масаль	СКИИ		
	Единица	2017	2018	2019	2020	2021
Величина	измерения					
Установленная тепловая	Гкал/час	1,38	1,38	1,54	1,54	2,83
мощность						
Располагаемая тепловая мощность	Гкал/час	1,38	1,38	1,54	1,54	2,83
Потери установленной тепловой мощности	1%	-	-	-	-	-
Средневзвешенный срон службы	лет	1,33	2,33	6	6	7,3
УРУТ на выработку тепловой энергии (утверждённый)	ке _{ут} /Гкал	216,7	216,7	229,1	229,1	229,1
УРУТ на выработку тепловой энергии (фактический)	ікг _{ут} /Гкал	204,1	204,1	200,0	200,0	200,0
Собственные нужды	Гкал/час	0,0333	0,0333	0,0333	0,0333	0,0333
Доля собственных нужд	%	2,41	2,41	2,41	2,41	2,41
энергии	ікг _{ут} /Гкал	228,4	228,4	236,6	236,6	236,6
Удельный расход электроэнергии	цкВт • ч / Гкал	н/д	н/д	н/д	н/д	н/д
Удельный расход теплоносителя	цм³/Гкал	0,285	0,285	0,285	0,285	0,285
Коэффициент использования установленной тепловой мощности		60,29	43,84	43,84	43,84	43,84

1.3 Тепловые сети, сооружения на них и тепловые пункты

1.3.1 Общие положения

Тепловые сети от котельных обслуживаются МБУ «ЖКХ». Суммарная протяжённость трубопроводов водяных тепловых сетей в однотрубном исполнении составляет 2578,08 м, средний наружный диаметр трубопроводов тепловых сетей составляет 83 мм. Схема тепловых сетей двухтрубная. Местные системы отопления присоединены к тепловым сетям по зависимой схеме без снижения потенциала сетевой воды. Компенсация температурных удлинений трубопроводов осуществляется за счёт естественных изменений направления трассы, а также применения компенсаторов.

1.3.2 Общая характеристика тепловых сетей

Универсальным показателем, позволяющим сравнивать системы транспортировки теплоносителя, отличающиеся масштабом теплофицируемого района, является удельная материальная характеристика сети, равная

д $\{M^2 / \Gamma (A) / (A) / (A) \}$

@сумм

где: 0с^р√_{мм} - присоединённая тепловая нагрузка, Гкал/ч;

M - материальная характеристика сети, м².

 $M = 2 = ? di * I_t {M^2},$

где: Z_i - длина i-го участка трубопровода тепловой сети, м; d_i -

диаметр і-го участка трубопровода тепловой сети, м.

показатель является эффективности одним ИЗ индикаторов централизованного теплоснабжения. Он определяет возможный уровень потерь теплоты при передаче (транспорте) по тепловым сетям и позволяет установить зону эффективного применения централизованного теплоснабжения. эффективности централизованной системы теплоснабжения с тепловыми сетями, выполненными с подвесной теплоизоляцией, определяется не превышением удельной материальной характеристики в зоне действия котельной на уровне 100 м² /Гкал/час. Зона предельной эффективности ограничена 200 м² /Гкал/час. Высокий уровень потерь тепловой энергии при её передаче по тепловым сетям обусловлен неэффективной удельной материальной харакетристикой (332,497 м²/Гкал/час). Таким образом, рекомендуется провести гидравличевские расчёты тепловой сети в соответствии с актуальными нагрузками потребителей тепловой энергии и произвести замену и реконструкцию участков тепловой сети согласно этим данным.

Тепловые сети проложены как надземным, так и бесканальным подземным способами. Диаметр водяных тепловых сетей 45 - 159 мм.

Таблица 2.3.2.1 - Общая характеристика тепловых сетей

т, та	его	Протяжённость	Средний(по	Материальная	Присоединённая	Удельная	Объём
T T T T T T T T T T T T T T T T T T T	l _	трубопроводов	материальной	характеристика	тепловая	материальна	трубопроводов
Ze za	RL(тепловых сетей	характеристике)	сети, м ²	нагрузка,	Я	тепловых
нован абже ого п	TTE ATE AET	в однотрубном	наружный		Гкал/час	характеристи	3
имен сист тосна тённи	Тип осит	исполнении, м	диаметр			ка сети, м ²	сетей, м
NN OC ÖE ÖE	Пар		трубопроводов			/Гкал/ час	
На	5 -		тепловых сетей,				
⊢ Ha	Те		М				
Котельная, п.	вода	2578,08	0,083	213,696	0,6427	332,497	13,900
Масальский	95/70 °C						
Итого		2578,08	0,083	213,696	0,6427	332,497	13,900

Таблица 2.3.2.2 - Характеристика водяных тепловых сетей от котельной, п. Масальский

Наименование участка	Наружный	Длина	Теплоизоляц	Тип	Год ввода в	Назначени	Число	Температурный
	диаметр	участка,		прокладки	эксплуатацию	е	часов	график работы
	трубопроводов	L, м	материал	прогогадил	(перекладки)		работ	тепловой сети (с
	на участке, D",						Ы	температурой
	M							срезки), °С
TK1 - TK2 (Подающий)	0,159	300	мин. вата	надзем.	1981	тепл. сети	4944	95/70
ТК2 - ТК1 (Обратный)	0,159	300	мин. вата	надзем.	1981	тепл. сети	4944	95/70
ТК2 - ТК3 (Подающий)	0,108	200	мин. вата	надзем.	1981	тепл. сети	4944	95/70
ТКЗ - ТК2 (Обратный)	0,108	200	мин. вата	надзем.	1981	тепл. сети	4944	95/70
ТКЗ - ТК4 (Подающий)	0,108	600	мин. вата	бесканал.	1981	тепл. сети	4944	95/70
ТК4 - ТК3 (Обратный)	0,108	600	мин. вата	бесканал.	1981	тепл. сети	4944	95/70
ТК2 - ТК29 (Подающий)	0,076	730	мин. вата	надзем.	1982	тепл. сети	4944	95/70

На рисунке 2.3.2.1 представлены доли протяжённости тепловых сетей различных видов прокладки от общей протяжённости.

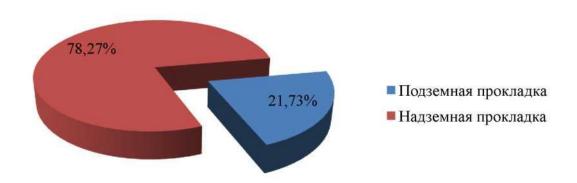


Рисунок 2.3.2.1 - Доли протяжённости участков трубопроводов тепловых сетей от котельных МБУ «ЖКХ» различных видов прокладки

Как видно из рисунка, основная часть трубопроводов тепловых сетей проложена надземным способом. Доли протяжённости тепловых сетей различных диаметров от общей протяжённости представлены на рисунке 2.3.2.2.

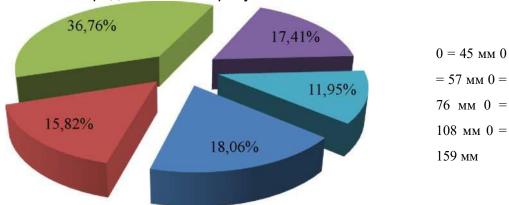


Рисунок 2.3.2.2 - Доли протяжённости участков трубопроводов тепловых сетей котельных МБУ «ЖКХ» различных диаметров

Как видно из рисунка, основная доля протяжённости приходится на трубопроводы диметром 76 мм.

1.3.3 Карта-схема тепловых сетей в зонах действия источников тепловой энергии

Карты-схемы тепловых сетей от котельных МБУ «ЖКХ» на территории Масальского сельсовета с подключёнными потребителями тепловой энергии представлены в приложении В.

1.3.4 Характеристика тепловых камер, павильонов и арматуры

На трубопроводах в каналах установлена необходимая стальная запорная арматура для дренирования сетевой воды, выпуска воздуха из трубопроводов и отключения ответвлений к потребителям тепловой энергии. Тепловые камеры и тепловые колодцы при существующих способах прокладки инженерных сетей отсутствуют.

1.3.5 Графики регулирования отпуска тепла в тепловые сети

В системе централизованного теплоснабжения МО Масальский сельсовет предусмотрено качественное регулирование отпуска тепловой энергии потребителям. Утверждённый температурный график отпуска тепла в тепловые сети - 95/70 °C при расчётной температуре наружного воздуха наиболее холодной пятидневки — 35 °C.

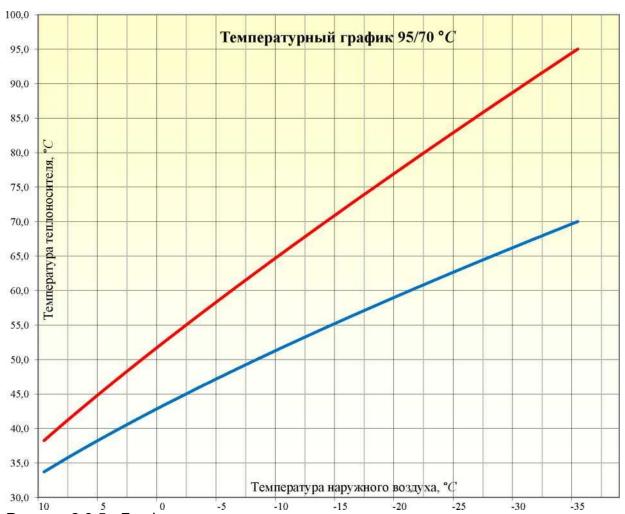


Рисунок 2.3.5 - График регулирования отпуска тепла

1.3.6 Фактические температурные режимы отпуска тепла в тепловые сети и их соответствие утверждённым графикам регулирования отпуска тепла

в тепловые сети

Исходные данные по запросу разработчика заказчиком схемы теплоснабжения не предоставлены.

1.3.7 Гидравлические режимы тепловых сетей

Согласно "Правилам технической эксплуатации электрических станций и сетей Российской Федерации" п. 6.2.60 гидравлические режимы водяных

тепловых сетей разрабатываются ежегодно для отопительного и летнего периодов. Расчётный гидравлический режим и пьезометрические графики тепловых сетей на существующий температурный график регулирования отпуска тепла в тепловые сети теплоснабжающей организацией не разработаны.

Согласно "Правилам технической эксплуатации электрических станций и сетей Российской Федерации" п. 6.2.32 в организациях, эксплуатирующих тепловые сети, проводятся их испытания на максимальную температуру теплоносителя, на определение тепловых и гидравлических потерь 1 раз в 5 лет.

Испытания тепловых сетей на гидравлические потери проводятся в соответствии с требованиями в целях определения эксплуатационных гидравлических характеристик трубопроводов, состояния их внутренней поверхности и фактической пропускной способности.

Основными гидравлическими характеристиками трубопроводов являются:

- гидравлическое сопротивление трубопровода s, 4^2 / 16^5 ;
- коэффициент гидравлического трения Я;
- эквивалентная шероховатость трубопровода к_э, м;
- потери давления на трение, Па;
- потери на местные сопротивления.

Гидравлические расчёты тепловых сетей котельных МБУ «ЖКХ» не произведены.

1.3.8 Насосные станции и тепловые пункты

Исходные данные по насосным станциям и тепловым пунктам по запросу разработчика заказчиком схемы теплоснабжения не предоставлены.

1.3.9 Статистика отказов и восстановлений тепловых сетей

В следующих таблицах отображена информация по инцидентам и авариям на тепловых сетях ООО «Масальское TC».

Таблица 2.3.9.1 - Аварии на тепловых сетях МБУ «ЖКХ»

N	Лесто	Дата и	Количество	Общая тепловая нагрузка		Дата и время	Дата и время	Дата и	Причина	
пово	еждения	время	потребителей,	потребителей,		начала	завершения	время	поврежде	
ПОВР	скдения	обнаруже	отключённых	отключённых от		устранения	устранения	включения	ния	
		РИЯ	ОТ	теплоснабжения (школы,		теплоснабжения (школы,		повреждения	теплоснабж	
		поврежде	теплоснабже	д/с	с, больниц	ы)	ния		е ния	
номер	участок	ния	ния	Отопле	Вентиля	ГВС	-		потребите	
участ	между				БСПТИЛИ	100			ЛЯМ	
ка	тепловыми			ние	ция					
Ka	камерами									
	камерами									
-	-	-	-	-	-	-	-	-	-	-

Таблица 2.3.9.2 - Инциденты на тепловых сетях МБУ «ЖКХ»

Таолице	Tabilita 2:0:0:2 Vindvigori Bi na Torilobbix Corilix Mb3 Witto (#							
Место п	овреждения	Дата и время	Количество	Общая	Дата и время	Дата и время	Дата и время	Причина
		обнаружения	потребителей,	тепловая	начала	завершения	включения	повреждени
номер		повреждения	отключённых	нагрузка	устранения	устранения	теплоснабжения	повреждени
участка	между		от ГВС	потребителей,	повреждения	повреждения	потребителям	7
	тепловыми			отключённых от				
	камерами			теплоснабжения				
				(школы, д/с				
-	-	-	-	-	-	-	-	-
								1

Место повреждения в пер плотность и прочность	иод гидравлических испытаний на	Место повреждения в перис	од повторных испытаний
номер участка	участок между тепловыми камерами	номер участка	участок между тепловыми камерами
-	-	-	-

Таблица 2.3.9.4 - Данные статистической отчётности по тепловым сетям

Год	Протяжённость	Общая	Доля сетей,	Заменено	Число
	сетей,	протяжённость	нуждающихся в	сетей, м	инцидентов
	нуждающихся в	сетей, м	замене в		инцидоннов
	замене, м		общем		
			протяжении		
			всех тепловых		
			сетей, %		
2019	448,68	2578,08	17,4	-	-
			4= 40		
2020	448,68	2578,08	17,40	-	-
2021	110 60	2570 00	17.40		
2021	448,68	2578,08	17,40	-	-

Техническое состояние трубопроводов тепловых сетей характеризует удельный вес сетей, нуждающихся в замене, в общем протяжении всех тепловых сетей (рисунок 2.3.9.1). Согласно предоставленным данным можно сделать вывод, что к 2015 году исчерпали свой эксплуатационный ресурс 21,07% тепловых сетей. В 2016 году доля таких тепловых сетей к замене уменьшилась до 17,40% по причине строительства новых участков трубопроводов тепловых сетей, откуда, следует, что ежегодные работы по замене тепловых сетей на территории МО Масальский сельсовет не проводятся. Таким образом, рекомендуется к замене 448,68 м тепловых сетей.

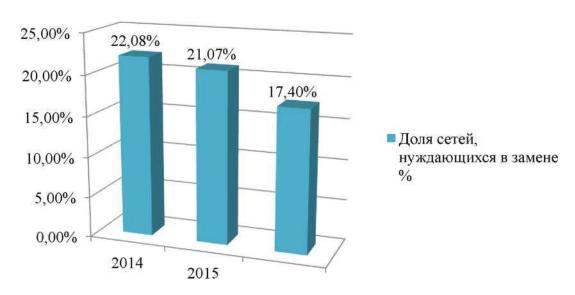


Рисунок 2.3.9.1 - Удельный вес тепловых сетей, нуждающихся в замене

Динамика изменения протяжённости тепловых сетей, нуждающихся в замене, в абсолютном выражении представлена на рисунке 2.3.9.2. К 2016 (базовому) году изменения протяжённости таких сетей не произошло.

В МО Масальский сельсовет в 2021 году заменены тепловых сетей не проводилось (рисунок 2.3.9.3). Ежегодные работы по замене тепловых сетей в МО не проводятся.

Необходимо уточнить долю износа трубопроводов тепловых сетей после проведения технического освидетельствования тепловых сетей.

1.4. Диагностика и ремонты тепловых сетей

Диагностика состояния теповых сетей проводится с целью своевременного выявления возможных повреждений сетей и заблаговременного проведения ремонтновосстановительных работ, не допуская повреждения сетей в период отопительного сезона и выполнения неплановых (аварийных) ремонтных работ, требующих отвлечения значительных трудовых и материальных ресурсов.

Планирование ремонтных программ начинается с формирования перечня объектов с указанием физических объёмов (длина, диаметр и т. д.) и характеристик объекта (пропуск тепловой энергии, гидравлические потери и т. д.). Данный перечень формируется на основании заявки начальника теплового хозяйства. Проведение летних ремонтов тепловых сетей планируется на основании гидравлических испытаний на прочность и плотность тепловых сетей.

На тепловых сетях МБУ «ЖКХ» необходимо проводить следующие виды испытаний:

1. Испытания на плотность и прочность в соответствии с "Правилами устройства и безопасной эксплуатации трубопроводов пара и горячей воды", "Правилами технической эксплуатации электрических станций и сетей Российской Федерации", "Типовой инструкцией по технической эксплуатации систем транспорта и распределения тепловой энергии" и местной инструкцией.

Испытания на тепловых сетях МБУ «ЖКХ» проводятся 1 раз в год - перед началом отопительного сезона в динамическом режиме (то есть при заполненных системах отопления производится включение двух сетевых насосов, и за счёт повышения давления происходит выявление утечек и порывов).

В теплоснабжающей организации не проведены работы по определению технического состояния систем теплоснабжения в соответствии с Письмом Министерства регионального развития РФ от 26 апреля 2012 г. № 9905-АП/14 "О Методических рекомендациях по определению технического состояния систем теплоснабжения, горячего водоснабжения, холодного водоснабжения и водоотведения путём проведения освидетельствования". Результаты этой работы должны быть учтены при определении надёжности и обоснований необходимости реконструкции и технического перевооружения источников тепловой энергии и тепловых сетей.

2. Испытания на максимальную температуру проводятся в соответствии с "Правилами технической эксплуатации электрических станций и сетей Российской Федерации", "Типовой инструкцией по технической эксплуатации систем транспорта и распределения тепловой энергии" и местной инструкцией. Испытания необходимо проводить не реже одного раза в 5 лет.

Испытания на тепловых сетях МБУ «ЖКХ» не проводились.

3. Испытания на тепловые потери проводятся в соответствии с "Правилами технической эксплуатации электрических станций и сетей Российской Федерации", "Типовой инструкцией по технической эксплуатации систем транспорта и распределения тепловой энергии" по утверждённому графику. Испытания необходимо проводить не реже одного раза в 5 лет.

Испытания на тепловых сетях МБУ «ЖКХ» не проводились.

4. Испытания на гидравлические потери (пропускную способность) проводятся в соответствии с "Правилами технической эксплуатации электрических станций и сетей Российской Федерации", "Типовой инструкцией по технической эксплуатации систем

транспорта и распределения тепловой энергии" по утверждённому графику.

Испытания на тепловых сетях МБУ «ЖКХ» проводятся 1 раз в год - перед началом отопительного сезона.

1.5. Анализ нормативных и фактических потерь тепловой энергии и теплоносителя

Расчёт и обоснование нормативов технологических потерь теплоносителя и тепловой энергии в тепловых сетях МБУ «ЖКХ» производились согласно Приказу № 325 Минэнерго РФ от 4 октября 2008 года "Порядок расчёта и обоснования нормативов технологических потерь при передаче тепловой энергии".

Нормативы технологических потерь при передаче тепловой энергии определялись расчётным способом организацией, эксплуатирующей тепловые сети для передачи тепловой энергии потребителям по следующим показателям:

- потери и затраты теплоносителей (вода);
- потери тепловой энергии в тепловых сетях теплопередачей через теплоизоляционные конструкции теплопроводов и с потерями и затратами теплоносителей (вода);
 - затраты электрической энергии на передачу тепловой энергии. Фактические годовые потери тепловой энергии через тепловую изоляцию

определяются путём суммирования фактических тепловых потерь по участкам тепловых сетей с учётом пересчёта нормативных часовых среднегодовых тепловых потерь на их фактические среднемесячные значения отдельно для участков подземной и надземной прокладки применительно к фактическим среднемесячным условиям работы тепловых сетей:

- фактических среднемесячных температур воды в подающей и обратной линиях тепловой сети, определённых по эксплуатационному температурному графику при фактической среднемесячной температуре наружного воздуха;
- среднегодовой температуры воды в подающей и обратной линиях тепловой сети, определённой как среднеарифметическое из фактических

среднемесячных температур в соответствующих линиях за весь год работы сети;

- фактической среднемесячной и среднегодовой температуре наружного воздуха за год.

Нормативы технологических потерь при передаче тепловой энергии, теплоносителя, включаемых в расчёт отпущенных тепловой энергии и теплоносителя приведены в таблице 2.3.11.

T-6 0 0 44	□
Tannulla 2 3 11 ·	Потери тепловой энергии и теплоносителя в сетях

Наименование	Годовые	Годовые	Годо	вые	Годо	вые
источника	нормативные	фактические	нормат	ивные	фактич	ческие
тепловой энергии	потери в сетях	потери в сетях	тепловые	потери в	тепловые	потери в
	с утечкой и	с утечкой и	сетях с	утечкой	сетях с	утечкой
	через	через	теплоно	сителя	теплоно	сителя
	изоляцию,	изоляцию,	м ³	Гкал	M ³	Гкал
	Гкал	Гкал				
Котельная, п.	1266,74	1393,1	468,8	18,25	852,000	35,020
Масальский						
Итого	1266,740	1393,1	468,8	18,25	852,000	35,020

1.6 Предписания надзорных органов по запрещению дальнейшей эксплуатации участков тепловой сети

По состоянию на 2016 год предписания надзорных органов по запрещению дальнейшей эксплуатации участков тепловых сетей МБУ «ЖКХ» не выдавались.

1.7 Описание основных схем присоединения потребителей к тепловым сетям

Присоединение потребителей к тепловым сетям в МБУ «ЖКХ» осуществляется по зависимой схеме без снижения потенциала воды при

переходе из тепловых сетей в местные системы теплопотребления. Система теплоснабжения МО Масальский сельсовет является закрытой.

1.8 Наличие коммерческих приборов учёта тепловой энергии и теплоносителя

Согласно требованию Федерального закона № 261 от 23.11.2009 "Об энергосбережении и повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации" на собственников помещений в многоквартирных домах и собственников жилых домов возложена обязанность по установке приборов учёта энергоресурсов.

В соответствии с Федеральным законом № 261 от 23.11.2009 (в редакции от 18.07.2011 г.) до 1 июля 2012 года собственники помещений в многоквартирных домах обязаны обеспечить установку приборов учёта воды, тепловой энергии, электрической энергии, а природного газа - в срок до 1 января 2015 года.

С 1 января 2012 года вводимые в эксплуатацию и реконструируемые многоквартирные жилые дома должны оснащаться индивидуальными теплосчётчиками в квартирах.

На котельных, осуществляющих выработку тепловой энергии, приборный (технический) учёт не организован. Коммерческий учёт тепловой энергии у потребителей не установлен (организован частично).

В таблице 2.3.14 приведена информация о количестве узлов учёта у потребителей тепловой энергии и горячей воды.

Таблица 2.3.14 - Информация о количестве узлов учёта у потребителей

тепловой энергии и горячей воды

Величина	ГВС	Отопление
Жилое	-	3
Нежилое	-	8
Итого	-	11

1.9 Анализ работы диспетчерской службы теплоснабжающей организации

Диспетчерская служба в теплоснабжающей организации отсутствует. Функции диспетчера выполняют дежурные операторы котельных.

1.10 Уровень автоматизации центральных тепловых пунктов и насосных станций

Насосные станции и центральные тепловые пункты со средствами автоматизации в МБУ «ЖКХ» на территории МО отсутствуют.

1.11 Защита тепловых сетей от превышения давления

Защита тепловых сетей МО Масальский сельсовет от превышения давления не предусмотрена.

Бесхозяйные тепловые сети

Бесхозяйных тепловых сетей на территории МО нет. Согласно методическим рекомендациям по разработке схем теплоснабжения, утверждённым совместным приказом Минэнерго России и Минрегиона России от 29 декабря 2012 года № 565/667, зоны действия источников тепловой энергии выделяются на карте поселения контурами, внутри которых расположены все объекты потребления тепловой энергии.

В описание зон действия источников тепловой энергии включается следующая информация:

- размещение источников тепловой энергии с адресной привязкой на карте поселения, городского округа;
- описание зон действия источников тепловой энергии, выделенных на карте поселения, городского округа контурами, внутри которых расположены все объекты потребления тепловой энергии.

Источником тепловой энергии Масальского сельсовета является одна водогрейная котельная, раположенная на территории п. Масальский по адресу ул. Советская, 7. Котельная снабжает теплом объекты общественного и коммерческого назначения, социального и коммунально-бытового назначения, многоквартирный одноэтажный и многоэтажный жилой фонд, а также индивидуальную усадебную жилую застройку. Основная часть индивидуальной усадебной жилой застройки снабжается теплом от автономных индивидуальных источников тепла (печи, камины, котлы на газообразном и твёрдом видах топлива).

Более подробно зоны действия котельных МБУ «ЖКХ» на территории МО с перечнем объектов потребления тепловой энергии с их адресами представлены в таблице 2.4.

Таблица 2.4 - Зоны действия источников теплоснабжения с перечнем подключённых объектов

Зоны действия источ	ников теплоснабжения
Наименование абонента	Адрес
Котельная, г	ı. Масальский
ООО «Юг Алтая»	ул. Набережная, 13
ИП Глушков В.А.	ул. Набережная, 15
Администрация Масальского сельсовета, «Масальский сельский лом культуры»	ул. Сибирская, 1
Главное управление МЧС России по	ул. Сибирская, 12
Аптайскому краю КГБУСО «Масальский психоневрологический интернат»	ул. Советская, 4
Администрация Масальского сельсовета, административное помещение Администрация Масальского сельсовета, гаражи ПАО «Сбербанк России»	ул. Советская, 5
УФПС Алтайского края МБДОУ «Детский сад «Чайка»	ул. Советская, 9
КГБУЗ «ЦБ Локтевского района», ФАП	yri. Goberokazi, o
МБОУ «Масальская СОШ», административное помещение МБОУ «Масальская СОШ», гаражи	ул. Советская, 11
Многоквартирная одноэтажная жилая	ул. Набережная, 14
застройка	ул. Первомайская, 7
	ул. Советская, 8 а
Многоквартирная многоэтажная жилая застройка	ул. Первомайская, 1
Индивидуальная усадебная жилая	ул. Первомайская, 2, 3, 5
застройка	ул. Сибирская, 2, 3
	ул. Советская, 3
	ул. Солдатская, 7

Схема расположения источников тепловой энергии МБУ «ЖКХ» и зоны их действия представлены в приложении Б.

Определение радиуса эффективного теплоснабжения

Радиус эффективного теплоснабжения - максимальное расстояние от теплопотребляющей установки до ближайшего источника тепловой энергии в системе теплоснабжения, при превышении которого подключение теплопотребляющей установки к данной системе теплоснабжения нецелесообразно по причине увеличения совокупных расходов в системе теплоснабжения.

Подключение дополнительной тепловой нагрузки с увеличением радиуса действия источника тепловой энергии приводит к возрастанию затрат на производство и транспорт тепловой энергии и одновременно к увеличению доходов от дополнительного объёма её реализации. Радиус эффективного теплоснабжения представляет собой то расстояние, при котором увеличение доходов равно по величине возрастанию затрат. Для действующих источников тепловой энергии это означает, что удельные затраты (на единицу отпущенной потребителям тепловой энергии) являются минимальными.

Результаты расчёта эффективного радиуса теплоснабжения котельных приводятся в таблице 2.4.1.4.

В настоящее время, методика определения радиуса эффективного теплоснабжения не утверждена федеральными органами исполнительной власти в сфере теплоснабжения.

Основными критериями оценки целесообразности подключения новых потребителей в зоне действия системы централизованного теплоснабжения являются:

- затраты на строительство новых участков тепловой сети и реконструкция существующих;
 - пропускная способность существующих тепловых сетей;
 - затраты на перекачку теплоносителя в тепловых сетях;
 - потери тепловой энергии в тепловых сетях при её передаче.

Комплексная оценка вышеперечисленных факторов, определяет величину эффективного радиуса теплоснабжения.

Расчёт эффективного радиуса теплоснабжения определяем согласно допустимому расстоянию от источника тепла до потребителя с заданным уровнем тепловых потерь для двухтрубной теплотрассы.

1) Расчёт годовых тепловых потерь через изоляцию и с утечкой теплоно сителя.

Расчёт годовых тепловых потерь через изоляцию и с утечкой теплоносителя проводится в соответствии с методическими указаниями по составлению энергетических характеристик для систем транспорта тепловой энергии по показателям: тепловые потери и потери сетевой воды СО 15334.20.523 2003 г.

В качестве теплоизоляционного слоя выбран пенополиуретан (ППУ). Время работы тепловой сети в год - более 5000 ч. Предполагая, что ведётся новое строительство теплотрассы, коэффициент старения принят равным 1,0. Длина участка - 100 метров. Расчёт годовых тепловых потерь произведён для трёх типов прокладки тепловых сетей: канальная, бесканальная и надземная по диаметрам трубопроводов от 57 мм до 1020 мм раздельно по подающему и обратному трубопроводу. Температурный график работы тепловых сетей принят 95/70 °C. Среднемесячные температуры наружного воздуха и грунта - по СНиП 23-01-99 "Строительная климатология". Результаты представлены в таблице 2.4.1.1.

Таблица 2.4.1.1 - Годовые тепловые потери трубопроводов с ППУ изоляцией Гкал

ду.	Тип	Тепловые потер	Суммарные		
ММ	прокладки		Гкал/год	<u> </u>	тепловые потери на 100 мтепловой
		подающий	обратный	С	сети <2100 QnOrn)
		трубопровод	трубопровод	утечкой	
57	Б	9.642	7.692	0.276	17.610
	К	7.021	5.601	0.276	12.898
	Н	10.293	8.778	0.276	19.347
76	Б	11.234	8.962	0.528	20.724
	К	8.371	6.679	0.528	15.578
	Н	11.808	10.141	0.528	22.477
89	Б	11.866	9.467	0.744	22.077
	К	9.047	7.217	0.744	17.008
	Н	12.713	10.897	0.744	24.354
108	Б	13.486	10.759	1.106	25.351
	К	9.725	7.757	1.106	18.588
	Н	13.623	11.654	1.106	26.383
133	Б	15.414	12.298	1.726	29.438
	К	11.398	9.093	1.726	22.217
	Н	15.438	13.166	1.726	30.330
159	Б	17.358	13.848	2.486	33.692
	К	11.556	9.220	2.486	23.262
	Н	16.248	13.925	2.486	32.659
219	Б	21.171	16.889	4.738	42.798
	К	14.470	11.543	4.738	30.751
	Н	19.439	16.682	4.738	40.859
273	Б	25.410	20.270	7.416	53.096
	К	16.708	13.331	7.416	37.455
	Н	22.344	19.295	7.416	49.055
325	Б	28.943	23.089	10.558	62.590
	К	18.637	14.867	10.558	44.062

	Н	26.698	23.216	10.558	60.472
373	Б	32.217	25.701	13.936	71.854
	К	20.406	16.277	13.936	50.619
	Н	30.182	26.298	13.936	70.416
426	Б	36.051	28.759	18.950	83.760
	К	22.480	17.934	18.950	59.364
	Н	33.082	28.729	18.950	80.761
478	Б	39.260	31.320	24.006	94.586
	К	24.761	19.753	24.006	68.520
	Н	35.986	31.342	24.006	91.334
530	Б	43.146	34.420	29.554	107.120
	К	26.676	21.281	29.554	77.511
	Н	38.890	33.956	29.554	102.400
630	Б	49.552	39.529	41.948	131.029
	К	30.532	24.357	41.948	96.837
	Н	44.698	39.185	41.948	125.831

Анализ результатов позволяет сделать вывод о том, что при реконструкции тепловых сетей с заменой трубопроводов с традиционной изоляцией на трубопроводы с ППУ изоляцией необходимо, по возможности, укладывать новые трубопроводы на скользящие опоры в существующие каналы из железобетонных лотков без последующей засыпки песком последних.

2) Определение пропускной способности трубопроводов водяных тепловых сетей.

Пропускная способность Q^{Di} определена по таблице 2.4.1.5 в Гкал/час при температурном графике 95/70 $^{\circ}$ С при следующих условиях: k_{9} =0,5 мм,у= 958.4 кгс/м 2 и удельных потерях давления на трение Δh =10 кгс/м 2 м. Нагрузка по каждой котельной, а так же соответствующий этой нагрузке условный проход труб D_{y} представлены в таблице 2.4.1.2.

Наименование	Наименование Нагрузка Q ^{DI} .		Годовой отпуск,	
котельной	Гкал/час	труб	Qгод. Гкал	
Котельная, п. Масальский	0.6513	100	3177.509	

3) Годовой отпуск тепловой энергии через трубопровод.

Годовой отпуск определяется по формуле

Qгод = Q^{Dt} * Π * 24, где Q^{Dl} - перспективная нагрузка, Гкал/ч;

п - продолжительность отопительного периода, значение которой примем 206 дням согласно СНиП 23-01-99* (СП 131.13330.2012 «Строительная климатология» Актуализированная версия) по г. Рубцовск.

Годовой отпуск также представлен в таблице 2.4.1.2.

4) Определение годовых тепловых потерь в соответствии с заданным уровнем.

Примем заданный уровень тепловых потерь равным 5% от годового отпуска тепловой энергии (таблица 2.4.1.3).

Таблица 2.4.1.3 - Годовой отпуск и тепловые потери по котельным

Наименование	Годовой отпуск,	Годовые потери Q^m.
котельной	Ягод. Гкал	Гкал
Котельная, п.	3177.509	158.875
Масальский		

5) Определение допустимого расстояния двухтрубной теплотрассы постоянного сечения с заданным уровнем потерь.

Учитывая, что годовые потери тепловой энергии зависят от длины трубопровода линейно, определяем допустимую длину теплотрассы постоянного сечения (таблица 2.4.1.4) по следующей формуле

C, = Qnim * 100/ Y.100 QSL

где Xi₀₀ QnoT - суммарные тепловые потери на 100 метрах трассы Таблица 2.4.1.4 - Радиус эффективного теплоснабжения котельных

Наименов	ание Г	одовые потери	Фактический	Эффективный
котельн	ой	QnOm. Гкал	радиус,факт ^м	радиус, план ^м
Котельна	·	25.529	н/д	622.333
Масальск	СИИ			

Целесообразно откорректировать эффективного величину радиуса теплоснабжения при очередной актуализации схемы теплоснабжения Масальский сельсовет, после освидетельствования тепловых энергоустановок в соответствии с Письмом Министерства регионального развития РФ от 26 апреля 2012 г. № 9905-АП/14 "О Методических рекомендациях по определению технического состояния теплоснабжения, горячего водоснабжения, систем холодного водоснабжения и водоотведения путём проведения освидетельствования", и энергетических характеристик тепловых сетей разработки ПО следующим показателям: тепловые потери, потери теплоносителя, удельный расход электроэнергии на транспорт теплоносителя, максимальный и среднечасовой расход сетевой воды, разность температур в подающем и обратном трубопроводах.

Тепловые нагрузки потребителей, групп потребителей в зонах действия источников тепловой энергии

Потребление тепловой энергии за отопительный период и за год в целом

Потребление тепловой энергии за отопительный период и за год в целом по котельным МБУ «ЖКХ» представлено в таблицах 2.5.1.1 - 2.5.1.2.

Таблица 2.5.1.1 - Потребление тепловой энергии по котельной, п. Масальский

IVIACAJIBCKI		•	0.11	1	•			
Месяц		илого		юго фонда,	^cp	Продолжительность		
	фонда	а, Гкал	Гі	Гкал		отопительного		
	Факт Норма		Факт Норма		наруж н.	периода, час/месяц		
Сентябр	-	-	-	-	-	-		
Октябрь	31,54	25,161	130,09	117,778	4,10	744		
Ноябрь	35,48	42,928	171,58	200,943	-5,70	720		
Декабрь	36,23	58,465	188,18	273,673	-13,20	744		
Январь	47,91	63,112	247,63	295,424	-16,20	744		
Февраль	44,50	54,972	214,51	257,321	-14,90	672		
Март	38,41	46,705	192,79	218,626	-7,80	744		
Апрель	24,93	22,980	102,93	107,568	4,60	576		
Май	-	0,216	-	1,013	-	-		
Итого	259,0	314,539	1247,71	1472,346	-7,30	4944		

Таблица 2.5.1.2 - Производство и потребление (баланс) тепловой энергии за отопительный период и за год в целом

e . e e e e e e e e e e e e	этепительный период и са тод в целем								
Наименование	Потребле	ение теплово	й энергии за с	отопительн	ый период	ц, Гкал/год			
	Выраб.	Собств.	Потери	Реали					
		нужды	(ГВС и	сеть	тепл.	зация			
		котельной	отопление		энергии	•			
			собств. зданий)						
			эдапии)						
Котельная, п.	2995,7	95,86	-	2899,84	1393,14	1506,7			
Масальский									
Итого	2995,7	95,86	-	2899,84	1393,14	1506,7			

Описание случаев (условий) применения отопления жилых помещений в многоквартирных домах с использованием индивидуальных квартирных источников тепловой энергии

Индивидуальные квартирные источники тепловой энергии в многоквартирных

жилых домах Масальского сельсовета не используются.

Значения тепловых нагрузок при расчётных температурах наружного воздуха в зонах действия источника тепловой энергии

Тепловые нагрузки потребителей на отопление, вентиляцию и горячее водоснабжение (ГВС) приняты в соответствии с договорными нагрузками потребителей тепловой энергии по данным МБУ «ЖКХ» и приведены в нижеследующих таблицах 2.5.3.1 - 2.5.3.2.

Таблица 2.5.3.1 - Тепловые нагрузки потребителей тепловой энергии жилого фонда

ронда							
Адрес	Отапливаем ая	Тепловая нагрузка, Гкал/час					
	площадь, кв.м	Отопление	ГВС	Вент.	Всего		
ул. Набережная, 14	42,3	0,0137	-	-	0,0137		
ул. Первомайская, с1по8	386,60	0,0624	-	-	0,0624		
ул. Первомайская, 2	89,30	0,0144	-	-	0,0144		
ул. Первомайская, 3	40,00	0,0065	-	-	0,0065		
ул. Первомайская, 5	40,00	0,0065	-	-	0,0065		
ул. Первомайская, 7	55,0	0,0163	-	-	0,0163		
ул. Сибирская, 2	50,40	0,0081	-	-	0,0081		
ул. Сибирская, 3	50,00	0,0081	-	-	0,0081		
			-	-			
ул. Советская, 3	43,7	0,0086	-	-	0,0086		
ул. Советская, 8 а	169,70	0,0274	-	-	0,0274		
ул. Солдатская, 7	75,40	0,0122	-	-	0,0122		
Итого котельная, п. Масальский	1042,4	0,1842	-	-	0,1842		
Всего по котельным	1042,4	0,1842	-	-	0,1842		

Таблица 2.5.3.2 - Тепловые нагрузки потребителей тепловой энергии нежилого фонда

Адрес	Отапливаемы й объём, м ³	ы Тепловая нагрузка, Гкал/ча			ı/час
	и оорем, м	Отопление	ГВС	Вент.	Всего
ООО «Юг Алтая», ул. Набережная, 13	1656,00	0,0153	-	-	0,0153
ИП Глушков В.А., ул. Набережная, 15	627,90	0,0116	-	-	0,0116
Администрация Масальского сельсовета, «Масальский сельский дом культуры», ул.	6834,80	0,0636	-	-	0,0636
Главное управление МЧС России по Алтайскому краю	325,69	0,0058	-	-	0,0058
КГБУСО «Масальский психоневрологический интернат», ул. Советская, 4	6055,00	0,0372	-	1	0,0372
Администрация Масальского сельсовета, административное	960,00	0,0143	-	-	0,0143
Администрация Масальского сельсовета, гаражи, ул. Советская, 5	234,00	0,0038	-	-	0,0038
ПАО Сбербанк России, ул. Советская, 5	132,57	0,0020	-	-	0,0020
СПК «Искра» ул.Солдатская №1	2538,2	0,022	-	-	0,022
УФПС Алтайского края ул. Советская, 5	313,00	0,0047	-	-	0,0047
МБДОУ «Детский сад «Чайка», ул. Советская, 9	1470,00	0,0165	-	-	0,0165
КГБУЗ «ЦБ Локтевского района», ФАП, ул. Советская,	661,00	0,0078	-	-	0,0078
МБОУ «Масальская СОШ», административное помещение, ул. Советская, 11	17395,50	0,2587	-	1	0,2587
МБОУ «Масальская СОШ», гаражи, ул. Советская, 11	257,00	0,0038	-	-	0,0038
Итого котельная, п. Масальский	39460,66	0,4671	-	-	0,4671
Всего по котельным	39460,66	0,4671	-		0,4671

Общая расчётная тепловая нагрузка потребителей, контролируемая МБУ «ЖКХ», по состоянию на 01.01.2021 г. составила 0,6513 Гкал/ч.

Существующий норматив потребления тепловой энергии для населения на отопление и горячее водоснабжение

В соответствии со статьёй 157 Жилищного кодекса Российской Федерации, постановлением Правительства Российской Федерации от 23 мая 2006 года № 306 "Об утверждении Правил установления и определения нормативов потребления коммунальных услуг" Советом депутатов Масальского сельсовета Локтевского района

Алтайского края утверждены следующие нормативы потребления услуг теплоснабжения на отопление 1 м² жилых многоквартирных и индивидуальных домов (рисунок 2.5.4).

ПОСТАНОВЛЕНИЕ

20.11.2008Γ. №23

н. Масальский

Об установлении нормативов потребления тепловой энергии на отопление

В соответствии с Жилищным Кодексом Российской Федерации, постановлением Правительства Российской Федерации от 23.05.2006г. № 306 «Об утверждении правил установления и определения нормативов потребления коммунальных услуг», руководствуясь Уставом муниципального образования Масальский сельсовет, ПОСТАНОВЛЯЮ:

6. Установить норматив потребления тепловой энергии на отопление для многоквартирных домов или жилых домов в следующих размерах:

-для одноэтажных домов 0,0325 Гкал на 1 кв.м, гз месяц.

- 7. Установленные настоящим постановлением нормативы потребления тепловой энергии на отопление многоквартирных домов или жилых домов применяются при отсутствии приборов учета и предназначены для определения размера платы за отопление.
- 8. Нормативы установлены в Гкал в месяц на 1 кв. метр общей площади жилых помещений из расчета равномерного потребления тепловой энергии на отопление многоквартирных домов или жилых домов в течение 12 месяцев.
 - 9. Настоящее постановление вступает в силу 01 января 2009г.
- 10. Обнародовать настоящее постановление на информационном стенде Администрации Масальского сельсовета. •

Балансы тепловой мощности и тепловой нагрузки в зонах действия источников тепловой энергии

Баланс установленной, располагаемой тепловой мощности, потерь тепловой мощности в тепловых сетях и присоединённой тепловой нагрузки

Баланс тепловой мо<u>щн</u>ости подразумевает соответствие подключённой тепловой нагрузки тепловой мощности источников.

Тепловая нагрузка потребителей рассчитывается как необходимое количество тепловой энергии на поддержание нормативной температуры воздуха в помещениях потребителя при расчётной температуре наружного воздуха. За расчётную температуру наружного воздуха принимается температура воздуха наиболее холодной пятидневки обеспеченностью 0,92 - минус 35°C.

Баланс установленной, располагаемой тепловой мощности, тепловой мощности нетто и потерь тепловой мощности в тепловых сетях, а также присоединённой тепловой нагрузки по каждому источнику тепловой энергии представлен в таблице 2.6.1.

Таблица 2.6.1 - Баланс установленной тепловой мощности и тепловой зоне действия котельной, п. Масальский с водогрейными нагрузки котлоагрегатами с присоединённой тепловой нагрузкой в горячей воде, Гкал/ч

Год

2015

2016

2019

2020

2021

Установленная мощность	1,38	1,38	1,54	1,54	2,83
оборудования в том числе в горячей воде	-	-	-	-	-
Средневзвешенный срок службь котлоагрегатов (лет)	2,33	3,33	6	6	7,3
Располагаемая мощность оборудования	1,38	1,38	1,54	1,54	2,83
Потери располагаемой тепловой мощности в том числе:	0,2895	0,2895	0,2895	0,2895	0,2895
Собственные нужды	0,0222	0,0333	0,0333	0,0333	0,0333
,		·	,	•	,
Потери мощности в тепловой сети	0,2562	0,2562	0,2562	0,2562	0,2562
Хозяйственные нужды	-	-	-	-	-
Присоединённая тепловая нагрузка, в т. ч.:	0,6427	0,6427	0,6427	0,6427	0,6513
отопление	0,6427	0,6427	0,6427	0,6427	0,6513
вентиляция	-	-	-	-	-
горячее водоснабжение (среднее за сутки)	-	-	-	-	-
Присоединённая тепловая нагрузка, в т. ч.:	0,6427	0,6427	0,6427	0,6427	0,6513
жилые здания, из них	0,1955	0,1955	0,1955	0,1955	0,1842
население	0,1955	0,1955	0,1955	0,1955	0,1842
нежилые здания, из них	0,4472	0,4472	0,4472	0,4472	0,4671
финансируемые из бюджета	0,4115	0,4115	0,4115	0,4115	0,4115
Прочие в горячей воде	-	-	-	-	-
Достигнутый максимум тепловой нагрузки в горячей воде	-	-	-	-	-
отопительно-вентиляционная тепловая нагрузка	-	-	-	-	-
нагрузка ГВС (средняя за сутки)	-	-	-	-	-
Резерв (+) / дефицит (-) тепловой мощности	0,4478	0,4478	0,4478	0,4478	0,4478
Доля резерва, %	32,45	32,45	32,45	32,45	32,45

2.11 Цены (тарифы) в сфере теплоснабжения Гидравлические режимы, обеспечивающие передачу тепловой источника тепловой энергии до самого удалённого потребителя и характеризующие существующие возможности (резервы и дефициты по пропускной способности) передачи тепловой энергии от источника к потребителю.

В системе централизованного теплоснабжения МО Масальский сельсовет принято централизованное качественное регулирование отпуска тепловой энергии по отопительной нагрузке. Вся выработка тепловой энергии

приходится на котельные МБУ «ЖКХ». Утверждённый график - 95/70 °C. Система теплоснабжения закрытая.

Анализ гидравлического режима должен производиться по данным карт тепловых эксплуатационных гидравлических режимов сетей. утверждённых руководителем теплоснабжающей организации:

- данные о суточном отпуске тепловой энергии за отопительный период для котельной;
 - данные о фактических параметрах теплоносителя на выводе из котельной;
- данные о фактических удельных расходах сетевой воды за отопительный период для котельной;
- проектные температурные графики отпуска тепловой энергии для котельной. Текущие показатели теплоносителя (температура, давление подачи и обратное)

фиксируются обслуживающим персоналом в вахтенном журнале котельных.

Фактические гидравлические режимы тепловых сетей от котельных МБУ «ЖКХ» не предоставлены.

1.12 Балансы теплоносителя

Для подготовки исходной и подпиточной воды на котельной используется установка химической водоподготовки «Комплексон-6».

В таблице 2.7 приведены годовые расходы теплоносителя.

Таблица 2.7 - Годовой расход теплоносителя на котельной, п. Масальский

Год	Ед.	2017	2018	2019	2020	2021
	MSM					
Всего подпитка тепловой сети,	тыс. т	0,852	0,852	0,852	0,852	0,852
В Т.Ч.:	/год					
нормативные утечки	тыс. т	0,581	0,581	0,581	0,581	0,581
теплоносителя	/год					

сверхнормативные утечки	тыс. т	0,271	0,271	0,271	0,271	0,271
теплоносителя	/год					
Отпуск теплоносителя из	тыс. т		-	-	-	-
тепловых сетей на цели	/год					
горячего водоснабжения (для						
открытых систем						

1.13 Топливные балансы источников тепловой энергии и система обеспечения топливом

Для производства тепловой энергии МО Масальский сельсовет в качестве основного, резервного и аварийного видов топлива используется каменный уголь марки ДР. Характеристика каменного угля представлена в таблице 2.8.1.

Таблица 2.8.1 д. Основные характеристики используемого топлива

Характеристика	Обозначение	Размерность	Значение
Низшая теплота сгорания	QI	ккал/кг	4900
Зольность рабочая	A ¹ⁱ	%	15,9
Влажность рабочая	W ^p	%	14,0
Выход летучих	Ϋ́r	%	47,0

Поставка и хранение резервного и аварийного топлива теплоснабжающей организацией на котельных не предусмотрены.

В следующей таблице приведены виды основного используемого топлива и его количество.

Таблица 2.8.2 - Описание видов и количества основного используемого топлива

Вид топлива	2016	2017	2018	2019	2020	2021
Котельная, п. Масальский						
Каменный уголь, т	822,0	957,2	995	835,2	828	1060,5

1.14 Надёжность теплоснабжения

Надёжность теплоснабжения обеспечивается надёжной работой элементов системы теплоснабжения, а также внешних, по отношению к системе теплоснабжения, систем электро -, водо -, топливоснабжения источников теплов. эн.

Интегральными показателями оценки надёжности теплоснабжения в целом являются такие эмпирические показатели как интенсивность отказов пот [1/год] и относительный аварийный недоотпуск тепла Q_{ae}/Q_{pac4} , где Q_{ae} - аварийный недоотпуск тепла за год (Гкал), Qрас4 - расчётный отпуск тепла системой теплоснабжения за год (Гкал). Динамика изменения данных показателей указывает на прогресс или деградацию надёжности каждой конкретной системы теплоснабжения. Однако они не могут быть применены в качестве универсальных системных показателей, поскольку не содержат элементов сопоставимости систем теплоснабжения.

Для оценки надёжности систем теплоснабжения необходимо использовать показатели надёжности структурных элементов системы теплоснабжения и внешних систем электро -, водо -, топливоснабжения источников тепловой энергии.

Показатель надёжности электроснабжения источников тепла (K₃)

Показатель отсутствием резервного характеризуется наличием или электропитания:

- при наличии резервного электроснабжения K₂ = 1,0;
- при отсутствии резервного электроснабжения при мощности источника тепловой энергии (Гкал/ч):
 - до 5,0: $K_9 = 0.8$;
 - 5.0 20: $K_9 = 0.7$;
 - свыше 20: $K_3 = 0.6$.

В следующей таблице представлены мощности каждого источника тепловой

энергии и соответствующие им показатели резервного электронсабжения.

Таблица 2.9.1 е Монцерсти источников тепловой энергии и соответствующие им

коэффициенты

Наименование котельной	Установленная мощность	Кэ
Котельная, п. Масальский	2,83	0,8

- 2)<u>Показатель надёжности водоснабжения источников тепла</u> (К_в) Характеризуется наличием или отсутствием резервного водоснабжения:
 - при наличии резервного водоснабжения K_в = 1,0;
- при отсутствии резервного водоснабжения при мо<u>щн</u>ости источника тепловой энергии (Гкал/ч):
 - до 5.0: К. = 0.8:
 - 5.0 20: $K_B = 0.7$;
 - свыше 20: $K_B = 0.6$.
- 3) <u>Показатель надёжности топливоснабжения источников тепла</u> (К_т) Характеризуется наличием или отсутствием резервного

топливоснабжения:

- при наличии резервного топлива K_т = 1,0;
- при отсутствии резервного топлива при мощности источника тепловой энергии (Гкал/ч):
 - до 5,0: KT = 1,0;
 - -5,0-20: KT = 0,7;
 - свыше 20: $K_T = 0.5$.

пропускной способности тепловых сетей фактическим тепловым нагрузкам потребителей (K_6)

Величина этого показателя определяется размером дефицита (%):

- до 10: $K_6 = 1.0$;
- 10 20: $K_6 = 0.8$;
- 20 30: $K_6 = 0.6$;
- свыше 30: Кб = 0,3.

В таблице 2.9.2 представлены значения дефицита тепловой энергии по каждому источнику и соответствующие им показатели соответствия тепловой мощности источников фактическим тепловым нагрузкам потребителей.

Таблица 2.9.1 - Значения деф<u>ици</u>тов каждого из источников тепловой энергии

и соответствующие им коэффициенты

Наименование котельной	Значение дефицита, %	К _б
Котельная, п. Масальский	•	1,0

5) Показатель уровня резервирования источников тепла и элементов тепловой сети (К_р)

Показатель, характеризуемый отношением резервируемой фактической тепловой нагрузки к фактической тепловой нагрузке (%) системы теплоснабжения, подлежащей резервированию:

- 90 100: $K_p = 1.0$;
- 70 90: $K_p = 0.7$;
- 50 70: $K_p = 0.5$;
- 30 50: $K_p = 0.3$;

- менее 201 (парифы) в сфере теплоснабжения 6) Показатель технического состояния тепловых сетей (Кс)

Показатель, характеризуемый долей ветхих, (%)подлежащих замене трубопроводов:

- до 10: $K_c = 1,0$;
- 10 20: $K_c = 0.8$;
- 20 30: $K_c = 0.6$;
- свыше 30: $K_c = 0.5$.

В таблице 2.9.2 представлены значения доли сетей по каждой котельной, нуждающихся в замене, и соответствующие им показатели технического состояния тепловых сетей.

Таблица 2.9.2 - Значения доли сетей по каждой котельной, нуждающихся в

замене, и соответствующие им коэффициенты

Наименование котельной	Доля сетей к замене, %	Кс
Котельная, п. Масальский	89,58	0,5

7) Показатель интенсивности отказов тепловых сетей (Котк) Характеризуемый количеством вынужденных отключений участков тепловой сети с ограничением отпуска тепловой энергии потребителям, вызванным отказом и его устранением за последние три года.

(1/(км * год)), VОтк = VОтк/VО * VО

где потк - количество отказов за последние три года;

- S протяжённость тепловой сети данной системы теплоснабжения (KM).
- В зависимости от интенсивности отказов (Иотк) определяется показатель надёжности ($K_{\text{отк}}$): $^{\text{до 0}}$, $^{\text{5: K}}$ отк $^{\text{1, 0}}$,

 - 0,5 0,8: K_{OTK} = 0,8;
 - 0.8 1.2: Котк = 0.6;
 - свыше 1,2: $K_{\text{отк}} = 0,5$.
 - 8) Показатель относительного недоотпуска тепла (К_{нед})

В результате аварий и инцидентов определяется по формуле:

Qнед = $Qab^{\prime}Q$ факт * ¹⁰⁰ (%X где Q_{ab} - аварийный недоотпуск тепла за последние 3 года;

Qф_{акт} - фактический отпуск тепла системой теплоснабжения за последние три года.

В зависимости от величины недоотпуска тепла (Q,^) определяется показатель надёжности (К_{нед}):

- до 0,1: K_H ед = 1,0;
- 0.1 0.3: К_нед = 0.8;
- -0,3-0,5: Кнед = 0,6;
- свыше 0,5: $K_{\text{нед}} = 0,5$.
- 9) Показатель качества теплоснабжения (К_ж)

Показатель характеризуется количеством жалоб потребителей тепла на нарушение качества теплоснабжения:

$$\mathcal{H} = \mathbf{\Pi} / \mathbf{\Pi}$$
 (%),

^жал' ^сумм

где Д - количество зданий, снабжающихся теплом от системы теплоснабжения; Д - количество зданий, по которым поступили жалобы на работу системы теплоснабжения.

В зависимости от рассчитанного коэффициента (Ж) определяется показатель надёжности (K_x) :

- до 0.2: Кж = 1.0;
- -0.2 0.5: K= 0.8;
- -0.5 0.8: K= 0.6;
- свыше 0,8: $K_{\text{ж}} = 0,4$.
- Показатель надёжности системы теплоснабжения (Кнад)

Определяется как средний по частным показателям K_{a} , K_{b} , K_{t} , K_{b} , K_{c} ,

ТГ тг тг .
^Котк, ^Кнед, ^Кж[:]

$$TГ_{\text{Кнад}} = \frac{^{K}_{\mathbf{3}} + ^{K}_{\mathbf{B}} + ^{K}_{\mathbf{T}} + ^{K}_{\mathbf{0}} + ^{K}_{\mathbf{C}} + ^{K}_{\mathbf{0}}_{\mathbf{T}}_{\mathbf{K}} + ^{K}_{\mathbf{H}}_{\mathbf{H}} + ^{K}_{\mathbf{X}}_{\mathbf{X}}}{\Pi}$$

где п - число показателей, учтённых в числителе.

Оценка надёжности систем теплоснабжения

Таблица 2.9.3 - Показатель надёжности и его частные показатели по каждой котельной

Название котельной	Кэ	Кв	TГ ^К т	Кб	K _P	Кс	KOTK LL	Д е	К	^к над
Котельная, п.	0,8	0,8	1,0	1,0	0,2	0,5	1,0	1,0	1,0	0,81
Масальский										

Проанализировав таблицу 2.9.3 с полученными показателями надёжности систему теплоснабжения можно оценить как надёжную (показатели находятся в промежутке от 0,75 до 0,89). Кроме самих тепловых сетей, у которых коэффициент 0,5.

2 Технико-экономические показатели теплоснабжающих и теплосетевых организаций

Раздел содержит описание результатов хозяйственной деятельности теплоснабжающих и теплосетевых организаций в соответствии с требованиями, устанавливаемыми Правительством Российской Федерации в стандартах раскрытия информации теплоснабжающими организациями, теплосетевыми организациями.

Производственные товарного расходы отпуска тепловой рекомендуется принимать по статьям, структура которых установлена материалами тарифных дел.

Целью настоящего раздела является описание:

- утверждённых тарифов, устанавливаемых динамики органами исполнительной власти субъекта РФ в области государственного регулирования цен (тарифов) по каждому из регулируемых видов деятельности и по каждой теплосетевой и теплоснабжающей организации с учётом последних трёх лет;
- структуры цен (тарифов), установленных на момент разработки схемы теплоснабжения:
- платы за подключение к системе теплоснабжения и поступления денежных средств от осуществления указанной деятельности;
- платы за услуги по поддержанию резервной тепловой мощности, в том числе для социально значимых категорий потребителей.

Данные по тарифам в сфере теплоснабжения МБУ «ЖКХ» показаны в таблицах

2.11.1, 2.11.2. 2.11 Цены (тарифы) в сфере теплоснабжения

1.15 Цены (тарифы) в сфере теплоснабжения

Таблица 2.11.1 - Среднеотпускные тарифы на отпуск и передачу тепловой энергии

Nº	Наименование	Тариф, руб./Гкал				
п/п	поставщика	20	20	2021		
Тари	ф на отпуск тепловой	энергии				
1	МБУ «ЖКХ»	-	-	-		
Тари	Тариф на передачу тепловой энергии					
2	МБУ «ЖКХ»	-	-	-		
3	Тариф на тепловую энергию	н/д	н/д	2636,71 2739,81		

Таблица 2.11.2 - Годовой баланс производства и реализации тепловой энергии

Показатель	Единица	Объем тепловой
	измерения	энергии
1 Выработка тепловой энергии	Гкал	2326,39
2 Собственные нужды источника	Гкал	93,51
тепла		
3 Отпуск тепловой энергии с	Гкал	-
коллекторов, всего:		
3.1 на технологические нужды	Гкал	-
предприятия		
3.2 бюджетным потребителям	Гкал	-
3.3 населению	Гкал	-
3.4 прочим потребителям	Гкал	-
3.5 организация - перепродавцам	Гкал	-
3.6 в собственную тепловую сеть	Гкал	-
4 Покупная тепловая энергия, всего:	Гкал	-
4.1 с коллекторов блок-станций	Гкал	-
4.2 из тепловой сети	Гкал	-
5 Отпуск тепловой энергии в сеть,	Гкал	2232,88
всего:		
5.1 потери тепловой энергии в сетях,	Гкал	851,06
всего:		
5.2 Полезный отпуск тепловой	Гкал	1381,82
энергии, всего:		
5.2.1 полезный отпуск на нужды	Гкал	-
предприятия		
5.2.2 полезный отпуск организациям	Гкал	-
перепродавцам, всего:		
5.2.3 Полезный отпуск по группам	Гкал	1381,82
потребителей, всего:		
5.2.3.1 бюджетным потребителям	Гкал	1020,47
5.2.3.2 населению	Гкал	245,91
5.2.3.3 прочим потребителям	Гкал	115,44

1.16 Описание существующих технических и технологических проблем в системах теплоснабжения поселения

Целью настоящего раздела является описание:

- существующих проблем организации качественного теплоснабжения (перечень причин, приводящих к снижению качества теплоснабжения, включая проблемы в работе теплопотребляющих установок потребителей);
- существующих проблем организации надёжного и безопасного теплоснабжения поселения (перечень причин, приводящих к снижению надёжного теплоснабжения, включая проблемы в работе теплопотребляющих установок потребителей);
 - проблем развития систем теплоснабжения;
 - существующих проблем надёжного и эффективного снабжения топливом

действующих систем теплоснабжения;

- анализ предписаний надзорных органов об устранении нарушений, влияющих на безопасность и надёжность системы теплоснабжения.

Причины, приводящие к снижению качества теплоснабжения:

- 1. Износ основных фондов, в первую очередь тепловых сетей (возможно наличие ветхих участков и участков с плохой изоляцией) и, как следствие, снижение качества теплоснабжения.
- 2. В теплоснабжающей организации не разработаны энергетические характеристики тепловых сетей по следующим показателям: тепловые потери, потери теплоносителя, удельный расход электроэнергии на транспорт теплоносителя, максимальный и среднечасовой расход сетевой воды, разность температур в подающем и обратном трубопроводах в соответствии с ПТЭ п. 2.5.6.
- 3. Не организован в достаточной степени (ФЗ № 261, ФЗ № 190) учёт потребляемых ресурсов, произведённой, отпущенной в сеть и реализованной теплоты и теплоносителя.
 - 4. Не разработаны гидравлические режимы тепловых сетей.
 - 5. Не проведена наладка теплопотребляющих установок потребителей.
- 6. Не актуализированы договоры теплоснабжения с потребителями тепловой энергии;

Проблемы в системах теплоснабжения разделены на две группы и сведены в табличный вид (таблица 2.12).

Рекомендации:

- 1. В соответствии с п. 6.2.32 ПТЭ тепловых энергоустановок провести испытания тепловых сетей на максимальную температуру теплоносителя, на определение тепловых и гидравлических потерь и результаты внести в паспорт тепловой сети. Результаты использовать при разработке программ по повышению энергоэффективности систем теплоснабжения.
- 2. Провести техническое освидетельствование тепловых сетей и оборудования в соответствии с "Методическими рекомендациями по определению технического состояния систем теплоснабжения, горячего водоснабжения, холодного водоснабжения и водоотведения путём проведения освидетельствования" (Письмо Министерства регионального развития РФ от 26 апреля 2012 г. № 9905-АП/14, ПТЭ тепловых энергоустановок п. 2.6.2).
- 3. Используя результаты испытаний, разработать энергетические характеристики тепловых сетей по показателям теловые и гидравлические потери, на их основе разработать программы наладки тепловых сетей и теплопотребляющих установок потребителей.
- 4. Выполнить наладку тепловых сетей и теплопотребляющих установок потребителей.
- 5. Провести диагностику трубопроводов тепловых сетей (неразрушающим методом) с целью определения коэффициента аварийноопасности, установления сроков и условий их эксплуатации и определения мер, необходимых для обеспечения расчётного ресурса тепловых сетей с последующим техническим освидетельствованием в соответствии с
- ПТЭ тепловых энергоустановок п. 2.6.2. Результаты использовать как обосновывающие материалы при разработке инвестиционных программ.
- 6. Актуализировать договоры теплоснабжения потребителей тепловой энергии в соответствии с п. 21 постановления Правительства Российской Федерации от 8 августа 2012 года № 808 "Об организации теплоснабжения Российской Федерации и о внесении изменений в некоторые акты Правительства Российской Федерации", а также с п. 2 приказа Министерства регионального развития Российской Федерации от 28 декабря 2009 года № 610 "Об утверждении правил установления и изменения

(пересмотра) тепловых нагрузок".

Таблица 2.12 - Проблемы в системах теплоснабжения

	Tipodilellibi B diletelliax teristeeri	S. C. M. C. M. M.		
Наименование	Проблемы в системах теплоснабжения			
системы				
теплоснабжения, теплоснабжающей организации	На котельных	На тепловых сетях		
Централизованное теплоснабжение, МБУ «ЖКХ»	1) Отсутствие приборов учёта как на выводе из котельных, так и у потребителей тепловой энергии	1) Износ основных фондов тепловых сетей; 2) Отсутствие энергетических характеристик, режимно-		
	•	наладочных испытаний, гидравлических режимов тепловых сетей;		
		 Не актуализированы договоры теплоснабжения с потребителями тепловой 		

- 2. Глава 2 Перспективное потребление тепловой энергии на цели теплоснабжения
- 2.1 Данные базового уровня потребления тепла на цели теплоснабжения Суммарная присоединённая нагрузка потребителей МО Масальский сельсовет Локтевского района Алтайского края, снабжаемого теплом посредством энергоисточников МБУ «ЖКХ» составляет 0,5275 Гкал/ ч (таблица 3.1).

Таблица 3.1 - Тепловые нагрузки потребителей МО Масальский сельсовет

Источник тепловой энергии	Расчётная тепловая нагрузка, Гкал/ч				
	Жилой фонд	Нежилой фонд	Всего		
Котельная, п. Масальский	0,1842	0,4671	0,6513		
Итого центральизованный источник	0,1842	0,4671	0,6513		

2.2 Прогноз приростов на каждом этапе площади строительных фондов на период до 2031 года с разделением объектов строительства на многоквартирные дома, жилые дома, общественные здания

Таблица 3.2.1 - Прогнозное изменение численности населения и динамика

изменения жилищного фонда МО Масальский сельсовет

Показатель	Ед. изм.	Значения			
		Исх. год 2016	Первая оч. 2021	Расч. срок 2031	
Численность населения МО Масальский сельсовет	чел.	2013	2081	2218	
Жилищный фонд на начало года	тыс. м ²	44,700	45,933	48,400	

Для определения объёмов жили<u>щн</u>ого строительства на 1 очередь и расчётный срок, учтена перспективная численность населения. В настоящее время на территории административного образования по данным

администрации сельсовета проживает 2013 человек (при средней жилищной обеспеченности 22,21 м² на человека). Согласно предоставленным данным численность населения на 1 очередь составит 2081 человек, на расчётный срок 2218 человек.

На 1 очередь строительства общий объём жилищного строительства составит 1233,3 м² общей площади квартир при жилищной обеспеченности

22.7 м² на человека.

На расчётный срок общий объём жилищного строительства составит

2466.7 м² общей площади квартир при жили<u>щн</u>ой обеспеченности 21,82 м² на человека.

Таблица 3.2.2 - Сводные показатели динамики жилой застройки в МО Масальский сельсовет

	Ед. изм.	2015	2020	2030
илые	площадь, тыс. м ²	44,700	44,700	45,933
	нагрузка, Гкал/час	7,2156	7,2156	7,2156
илые	площадь, тыс. м ²	-	-	-
	нагрузка, Гкал/час	-	-	-
илые	площадь, тыс. м ²	-	1,233	2,467
	нагрузка, Гкал/час	-	0,1991	0,3982
нда	площадь, тыс. м ²	44,700	45,933	48,400
	нагрузка, Гкал/час	7,2156	7,4147	7,8129
	илые	илые площадь, тыс. м ² нагрузка, Гкал/час илые площадь, тыс. м ² нагрузка, Гкал/час илые площадь, тыс. м ² нагрузка, Гкал/час нда площадь, тыс. м ²	илые площадь, тыс. м ² 44,700 нагрузка, Гкал/час 7,2156 илые площадь, тыс. м ² - нагрузка, Гкал/час - илые площадь, тыс. м ² - нагрузка, Гкал/час -	илые площадь, тыс. м ² 44,700 44,700 нагрузка, Гкал/час 7,2156 илые площадь, тыс. м ² нагрузка, Гкал/час илые площадь, тыс. м ² - 1,233 нагрузка, Гкал/час - 0,1991 нда площадь, тыс. м ² 44,700 45,933

4 Глава 4 Перспективные балансы тепловой мощности источников тепловой энергии и тепловой нагрузки

Глава 3 "Перспективные балансы тепловой мощности источников тепловой энергии и тепловой нагрузки" обосновывающих материалов разработана в соответствии с пунктом 39 "Требований к схемам теплоснабжения, порядку их разработки и утверждения" с целью установления дефицитов тепловой мощности и пропускной способности существующих тепловых сетей при существующих (в базовом периоде разработки схемы теплоснабжения) установленных и располагаемых значениях тепловых мощностей источников тепловой энергии.

В настоящее время источником тепловой энергии для объектов общественного и коммунально-бытового коммерческого, социального И назначения, строений многоквартирного одноэтажного многоэтажного жилого И фонда, индивидуальной усадебной жилой застройки и прочих объектов является локальная котельная, оснащённая котлами на твёрдом топливе. Охват централизованным теплоснабжением жилых строений согласно предоставленным данным достаточно низкий, многоквартирный одноэтажный и многоэтажный жилой фонд, а также индивидуальная усадебная жилая застройка снабжается теплом посредством автономных индивидуальных отопительных установок (печи, камины, котлы на газообразном и твёрдом видах топлива).

На территории Масальского сельсовета планируется строительство новых

объектов общественного и коммерческого назначения согласно проекту генерального плана МО Масальский сельсовет Локтевского района Алтайского края. Перечень новых планируемых к строительству объектов а также сроки его реализации представлены в таблице 4.1.

Таблица 4.1 - Новые планируемые к строительству объекты на территории

МО Масальский сельсовет Локтевского района Алтайского края

Наименование объекта	Место	Параметры	Срок
	пазменнения	объекта	резпизации
Детская спортивная площадка	п. Масальский	1 объект	2016 - 2034 г.г.
СТО	п. Масальский	2 поста	2016 - 2034 г.г.
Часовня	п. Масальский	1 объект	2016 - 2034 г.г.
Магазин	п. Масальский	1 объект	2016 - 2034 г.г.

В проекте генерального плана отсутствует информация по конкретному размещению новых планируемых к строительству объектов общественноделовой зоны на территории посёлка, поэтому перспективную нагрузку а также объём полезного отпуска предлагается определить проектом. На момент базового периода площадь объектов общественного и коммерческого, социального и коммунально-бытового назначения, подключённых к централизованному теплоснабжению, составила 8752,87 м².

Согласно проекту генерального плана схемой территориального планирования МО Масальский сельсовет Локтевского района Алтайского края запланирована газификация Масальского сельсовета. Источник газоснабжения

- Локтевская газораспрежделительная станция (ГРС) на магистральном газопроводе. В объёме системы газоснабжения предусмотрены следующие мероприятия:
 - строительство межпоселкового газопровода;
 - строительство газораспределительной станции (ГРС).

Проектируемую и новую строящуюся многоквартирную одноэтажную и

многоэтажную, а также индивидуальную усадебную жилую застройку предполагается размещать на свободных от застройки территориях в границе населённого пункта на планируемой к выделению территории в северовосточной части посёлка Масальский (3,2 га). Выделение территории под жилую застройку как в селе Анто<u>ши</u>ха, так и в селе Кучеровка не планиркется по причине оттока жителей в другие населённые пункты.

Существующую, проектируемую и новую строящуюся многоквартирную одноэтажную и многоэтажную, а также индивидуальную усадебную жилую застройку планируется газифицировать поквартирно и использовать природный газ на нужды горячего водоснабжения, теплоснабжения посредством автономных индивидуальных источников тепла (печи, камины, котлы на газообразном виде топлива).

Объекты общественного и коммерческого, социального и коммунальнобытового назначения, а также производственные предприятия, снабжаемые теплом посредством индивидуальных отопительных установок на твёрдом топливе, планируется перевести на теплоснабжение модульными котельными на газообразном топливе (природный газ).

В соответствии с главой 7, статья 24 от 23 ноября 2009 года ФЗ № 261 "Об энергосбережении и повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты РФ" государственное (муниципальное) учреждение обязано обеспечить снижение в сопоставимых условиях объёма

потреблённых им воды, дизельного и иного топлива, мазута, природного газа, тепловой энергии, электрической энергии, угля в течение пяти лет не менее чем на пятнадцать процентов от объёма фактически потреблённого им в предыдущем году каждого из указанных ресурсов с ежегодным снижением такого объёма не менее чем на три процента.

В соответствии с Государственной программой Российской Федерации "Энергосбережение и повышение энергетической эффективности на период до 2020 года", утверждённой распоряжением Правительства Российской Федерации от 27 декабря 2010 г. № 2446-р г. Москва определим нагрузки и объём полезного отпуска тепла населению а также бюджетным потребителям на период с 2016 по 2021, а также на расчётный 2031 год.

На рисунке 4 изображена диаграмма изменения нагрузки по отношению к располагаемой мощности оборудования.

Таблица 4.1 - Существующие и перспективные балансы тепловой мощности, тепловой нагрузки и отпуска тепловой энергии

нагрузки и отпуска те	энновой эне	эргии					
Наименование	2016	2017	2018	2019	2020	2021	2031
Каменный уголь, т	822,000	827,493	825,613	794,789	828	1060,5	786,691
УТМ, Гкал/час	1,38	1,38	1,38	1,38	1,54	2,83	1,38
Тепловая нагрузка итого, Гкал / час	0,6427	0,6268	0,6109	0,5950	0,2831	0,5829	0,5829
в том числе: жилой фонд,	0,1955	0,1912	0,1869	0,1826	0,0511	0,1783	0,1783
нежилой фонд, Гкал/час	0,4472	0,4356	0,4240	0,4124	0,2320	0,4046	0,4046
Выработка тепла, Гкал/год	2991,180	3011,169	2517,1	2517,1	2773,0	2995,7	2862,693
Собственные нужды, Гкал/год	164,444	91,298	79,90	79,90	79,9	95,86	84,455
Отпуск в сеть, Гкал/год	2826,736	2919,871	2437,2	2437,2	2693,1	2899,84	2778,238
Потери тепла в сетях, Гкал/год	1266,740	1359,875	855,7	855,7	1292,9	1393,14	1359,875
Реализация тепла итого, Гкал/год,	1559,996	1559,996	1581,49	1581,49	1400,18	1506,7	1418,363
в том числе: жилой фонд,	338,186	338,186	327,71	327,71	252,94	259,0	322,511
нежилой фонд, Гкал/год	1221,810	1221,810	1253,78	1253,78	1147,24	1247,7	1095,852

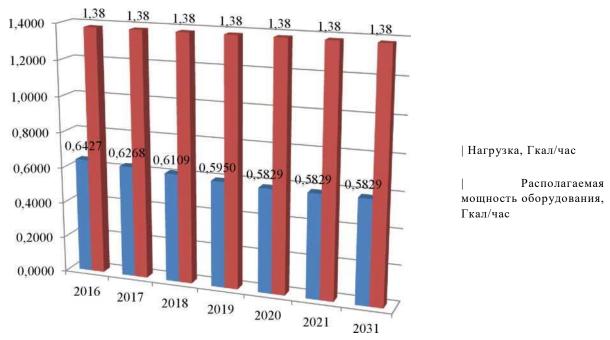


Рисунок 4 - Диаграмма изменения нагрузки по отношению к располагаемой

Таблица 4.2 - Объём полезного отпуска тепловой энергии потребителям жилого фонда

Адрес	Отапливае	Полезны	Фактически	Нагрузка	Nº
	мая	й	потреблённая	,	договора,
	площадь,	отпуск,	тепловая	Гкал/час	дата
	M^2	Гкал/год	энергия,		заключени
			Гкал/год		Я
ул. Набережная, 14	42,3	16,24	16,24	0,0137	-
ул. Первомайская, 1	386,60	49,0	49,0	0,0624	-
ул. Первомайская, 2	89,30	34,29	34,29	0,0144	-
ул. Первомайская, 3	40,00	15,36	15,36	0,0065	-
ул. Первомайская, 5	40,00	15,36	15,36	0,0065	-
ул. Первомайская, 7	55,00	21,12	21,12	0,0163	-

ул. Сибирская, 2	50,40	19,35	19,35	0,0081	-
ул. Сибирская, 3	50,00	10,10	10,10	0,0081	-
ул. Советская, 3	43,7	16,78	16,78	0,0086	-
ул. Советская, 8а	169,70	32,50	32,50	0,0274	-
ул. Солдатская, 7	75,40	28,90	28,90	0,0122	-
Итого по жилому фонду	1042,4	259,0	259,0	0,1842	-

Таблица 4.3 - Объём полезного отпуска тепловой энергии потребителям

нежилого фонда

Наименование организации, юридический адрес	Полезны й отпуск, Гкал/год	Фактически Потреблённ ая тепловая энергия, Гкал/год	Нагрузка, Гкал/час	№ договора, дата заключения
Бюджет				
Администрация Масальского сельсовета, «Масальский сельский		218,0	0,0636	1. 30.12.2020г.
Главное управление МЧС России по Алтайскому краю, ул. Сибирская,		28,5	0,0058	11. 04.03.2021г
КГБУСО «Масальский психоневрологический интернат», ул. Советская, 4		179,05	0,0372	5. 24.12.2020г.
Администрация Масальского сельсовета, административное помещение, ул. Советская, 5		38,15	0,0143	1. 30.12.2020г
Администрация Масальского сельсовета, гаражи, ул. Советская, 5		26,85	0,0038	1. 30.12.2020г.
МБДОУ «Детский сад «Чайка», ул. Советская, 9		94,13	0,0165	3 10.02.2021г.
КГБУЗ «ЦБ Локтевского района», ФАП, ул. Советская, 9		33,07	0,0078	6. 28.01.2021г.
МБОУ «Масальская СОШ», административное помещение, ул. Советская, 11		479,36	0,2587	2. 10.02.2021г.
МБОУ «Масальская СОШ», гаражи, ул. Советская, 11		18,71	0,0038	2. 10.02.2021г.
Итого		1115,82	0,4115	-
	Прочие			

ИП Глушков ул. Набережная, 15	21,2	0,0116	13.
VIII T JIJ EKOD JJI. TIABET EJKHAJI, TO	21,2	0,0110	13. 29.10.2019г.
			29.10.20191.
ОАО «СБЕРБАНК РОССИИ», УЛ.	9,73	0,0020	8.
Советская, 5			01.10.2018г.
МАГАЗИН «АССОРТИ», УЛ.	27,37	0,0153	6.
Набережная 13			01.08.2018г.
АО «Почта России», ул.	23,54	0,0047	. 9.
Советская, 5			01.01.2019г.
СПК «Искра» ул.Советская 1	50,05	0,022	
Итого	131,89	0,0556	-
	,	,	
Итого по нежилому фонду	1247,71	0,4671	-

Общий объём полезного отпуска тепловой энергии потребителям МБУ «ЖКХ Масальского сельсовета Локтевского района Алтайского края в 2021году составит 1506,71 Гкал, а договорная нагрузка составит 0,6513 Гкал/час.

- 5 Глава 4 Перспективные балансы производительности водоподготовительных установок и максимального потребления теплоносителя теплопотребляющими установками потребителей, в том числе в аварийных режимах
- 5.1 Определение нормативов технологических потерь и затрат теплоносителей К нормируемым технологическим затратам теплоносителя (теплоноситель - вода) относятся:
- затраты теплоносителя на заполнение трубопроводов тепловых сетей перед пуском после плановых ремонтов и при подключении новых участков тепловых сетей;
- технологические сливы теплоносителя средствами автоматического регулирования теплового и гидравлического режима, а также защиты оборудования;
- технически обоснованные затраты теплоносителя на плановые эксплуатационные испытания тепловых сетей и другие регламентные работы.

К нормируемым технологическим потерям теплоносителя относятся технически неизбежные в процессе передачи и распределения тепловой энергии потери теплоносителя с его утечкой через неплотности в арматуре, сальниковых компенсаторах и трубопроводах тепловых сетей в пределах, установленных правилами технической эксплуатации электрических станций и сетей, а также правилами технической эксплуатации тепловых энергоустановок.

Нормативные значения потерь теплоносителя за год с его нормируемой утечкой, м³, определялись по формуле

^ут.н. & ^год ^год ¹⁰ '^ут.год.н. ^год,

где а - норма среднегодовой утечки теплоносителя, м³/ч • м³, установленная правилами технической эксплуатации элекрических станций и сетей, а также правилами технической эксплуатации тепловых энергоустановок, в пределах 0,25% среднегодовой ёмкости трубопроводов тепловых сетей в час;

 ${\sf Y}_{\sf ro}$ д - среднегодовая ёмкость трубопроводов тепловых сетей,

3

эксплуатируемых теплосетевой организацией, м;

^п_год - продолжительность функционирования тепловых сетей в году, ч;

 ${\rm m_y T._r o g. h.}$ - среднегодовая норма потерь теплоносителя, обусловленных утечкой, м 3 /ч.

Значение среднегодовой ёмкости трубопроводов тепловых сетей, м^з,

определяется согласно выражению

^Угод (Уот ^пот + Уп n л)/С n от + n л') (Уот n от + Yn n л ')/ n год,

где $У_{\text{от}}$ и $У_{\text{л}}$ - ёмкость трубопроводов тепловых сетей в отопительном и неотопительном периодах, м 3 ;

 $\Pi_{\text{от}}$ и $\Pi_{\text{л}}$ - продолжительность функционирования тепловых сетей в отопительном и неотопительном периодах, ч.

 $G_{ymH} = 3,688 \cdot 10^{-2} \cdot 14,752 \cdot 4944 \cdot 10^{-2} = 26,898 \text{ м}^3$ Баланс производительности ВПУ системы теплоснабжения МБУ «ЖКХ соответствует данным, представленным в таблице 5.1.

Таблица 5.1 - Баланс производительности ВПУ и подпитки тепловой сети для котельных МБУ «ЖКХ

Зона действия источника тепловой энергии	Размерност	2015	2020	2030
Производительность ВПУ	тонн/ч	0,500	0,500	0,500
(водоподготовительной установки)				
Располагаемая производительность ВПУ	тонн/ч	0,500	0,500	0,500
Всего подпитка тепловой сети	тонн/ч	0,172	0,164	0,164
Максимальная подпитка тепловой сети в	тонн/ч	0,200	0,200	0,200
период повреждения участка				
Резерв(+)/дефицит(-) ВПУ	тонн/ч	0,327	0,335	0,335
Доля резерва	%	65,54	67,02	67,02

5. Глава 5 Предложения по строительству, реконструкции и техническому перевооружению источников тепловой энергии

Таблица 6 - Мероприятия на источниках тепловой энергии и затраты на их внедрение

Наименование планируемого	Затраты (план), тыс.	Планируемая
мероприятия, вид энергетического	руб.	дата внедрения,
Заключить договоры теплоснабжения с	10,000	2021
потребителями тепловой энергии как		
жилого фонда, так и с потребителями		
тепловой энергии нежилого фонда,		
существующие договоры		
теплоснабжения актуализировать в		
соответствии с требованиями		

5.1 Определение условий организации централизованного теплоснабжения, индивидуального теплоснабжения, а также поквартирного отопления

Согласно статье 14 ФЗ № 190 "О теплоснабжении" от 27.07.2010 года, подключение теплопотребляющих установок и тепловых сетей потребителей тепловой энергии, в том числе застройщиков, к системе теплоснабжения осуществляется в порядке, установленном законодательством о градостроительной деятельности для подключения объектов капитального строительства к сетям инженерно-технического обеспечения, с учётом особенностей, предусмотренных ФЗ № 190 "О теплоснабжении" и правилами подключения к системам теплоснабжения, утверждёнными Правительством Российской Федерации.

Подключение осуществляется на основании договора на подключение к системе теплоснабжения, который является публичным для теплоснабжающей организации, теплосетевой организации. Правила выбора теплоснабжающей организации или теплосетевой организации, к которой следует обращаться заинтересованным в подключении к системе теплоснабжения лицам и которая не вправе отказать им в услуге по такому подключению и в заключении соответствующего договора, устанавливаются правилами подключения к системам теплоснабжения, утверждёнными Правительством Российской Федерации.

При наличии технической возможности подключения к системе теплоснабжения и при наличии свободной мощности в соответствующей точке подключения отказ потребителю, в том числе застройщику, в заключении договора на подключение объекта капитального строительства, находящегося в границах определённого схемой теплоснабжения радиуса эффективного теплоснабжения, не допускается. Нормативные сроки подключения к системе теплоснабжения этого объекта

капитального строительства устанавливаются правилами подключения к системам теплоснабжения, утверждёнными Правительством Российской Федерации.

В случае технической невозможности подключения к системе теплоснабжения объекта капитального строительства вследствие отсутствия свободной мощности в соответствующей точке подключения на момент обращения соответствующего потребителя, в том числе застройщика, но при наличии в утверждённой в установленном порядке инвестиционной программе теплоснабжающей организации или теплосетевой организации мероприятий по развитию системы теплоснабжения и снятию технических ограничений, позволяющих обеспечить техническую возможность подключения к системе теплоснабжения объекта капитального строительства, отказ в заключении договора на его подключение не допускается. Нормативные сроки его системе теплоснабжения устанавливаются в соответствии с К инвестиционной программой теплоснабжающей организации или теплосетевой организации в пределах нормативных сроков подключения к системе теплоснабжения, установленных правилами подключения к системам теплоснабжения, утверждёнными Правительством Российской Федерации.

В случае технической невозможности подключения к системе теплоснабжения объекта капитального строительства вследствие отсутствия свободной мощности в соответствующей точке подключения на момент обращения соответствующего потребителя, в том числе застройщика, и при отсутствии в утверждённой в установленном порядке инвестиционной программе теплоснабжающей организации или теплосетевой организации мероприятий по развитию системы теплоснабжения и снятию технических ограничений, позволяющих обеспечить техническую возможность подключения к системе теплоснабжения этого объекта капитального строительства, теплоснабжающая организация или теплосетевая организация в сроки и в порядке, установлены правилами подключения к системам утверждёнными Правительством Российской Федерации, обязана обратиться в федеральный орган исполнительной власти, уполномоченный на реализацию сфере теплоснабжения, государственной политики В или орган самоуправления, утвердивший схему теплоснабжения, с предложением о включении в неё мероприятий по обеспечению технической возможности подключения к системе теплоснабжения этого объекта капитального строительства. Федеральный орган исполнительной власти, уполномоченный на реализацию государственной политики в сфере теплоснабжения, или орган местного самоуправления, утвердивший схему теплоснабжения, в сроки, в порядке и на основании критериев, которые установлены разработки утверждения схем теплоснабжения, И утверждённым Правительством Российской Федерации, принимает решение о внесении изменений в схему теплоснабжения или об отказе во внесении в неё таких изменений. В случае если теплоснабжающая или теплосетевая организация не направит в установленный срок и (или) представит с нарушением установленного порядка в федеральный орган исполнительной власти, уполномоченный на реализацию государственной политики в сфере теплоснабжения, или орган местного самоуправления, утвердивший схему теплоснабжения, предложения о включении в неё соответствующих мероприятий, потребитель, в том числе застройщик, вправе потребовать возмещения убытков, нарушением, (или) обратиться причинённых данным И федеральный антимонопольный орган с требованием о выдаче в отношении указанной организации предписания о прекращении нарушения правил недискриминационного доступа к товарам.

В случае внесения изменений в схему теплоснабжения теплоснабжающая организация или теплосетевая организация обращается в орган регулирования для внесения изменений в инвестиционную программу. После принятия органом регулирования решения об изменении инвестиционной программы он обязан учесть внесённое в указанную инвестиционную программу изменение при установлении

тарифов в сфере теплоснабжения в сроки и в порядке, которые определяются основами ценообразования в сфере теплоснабжения и правилами регулирования цен (тарифов) в сфере теплоснабжения, утверждёнными Правительством Российской Федерации. Нормативные сроки подключения объекта капитального строительства устанавливаются в соответствии с инвестиционной программой теплоснабжающей организации или теплосетевой организации, в которую внесены изменения, с учётом нормативных сроков подключения объектов капитального строительства, установленных правилами подключения к системам теплоснабжения, утверждёнными Правительством Российской Федерации.

Таким образом, вновь вводимые потребители, обратившиеся соответствующим образом в теплоснабжающую организацию, должны быть подключены к централизованному теплоснабжению, если такое подсоединение возможно в перспективе.

С потребителями находящимися за границей радиуса эффективного теплоснабжения, могут быть заключены договора долгосрочного теплоснабжения по свободной (обоюдно приемлемой) цене, в целях компенсации затрат на строительство новых и реконструкцию существующих тепловых сетей, и увеличению радиуса эффективного теплоснабжения.

Кроме того, согласно СП 42.133330.2011 "Градостроительство. Планировка и застройка городских и сельских поселений", в районах многоквартирной жилой застройки малой этажности, а также одно-, двухквартирной жилой застройки с приусадебными (приквартирными) земельными участками теплоснабжение допускается предусматривать от котельных на группу жилых и общественных зданий или от индивидуальных источников тепла при соблюдении технических регламентов, экологических, санитарно-гигиенических, а также противопожарных требований. Групповые котельные допускается размещать на селитебной территории с целью сокращения потерь при транспорте теплоносителя и снижения тарифа на тепловую энергию.

Согласно СП 60.13330.2012 "Отопление, вентиляция и кондиционирование воздуха", для индивидуального теплоснабжения зданий следует применять теплогенераторы полной заводской готовности на газообразном, жидком и твёрдом топливе общей теплопроизводительностью до 360 кВт с параметрами теплоносителя не более 95° С и 0,6 МПа. Теплогенераторы следует размещать в отдельном помещении на любом надземном этаже, а также в цокольном и подвальном этажах отапливаемого здания.

Условия организации поквартирного теплоснабжения определены в СП 54.13330.2011 "Здания жилые многоквартирные" и СП 60.13330.2012 "Отопление, вентиляция и кондиционирование воздуха".

Согласно п. 15, с. 14, ФЗ № 190 от 27.07.2010 г, запрещается переход на отопление жилых помещений в многоквартирных домах с использованием индивидуальных квартирных источников тепловой энергии, перечень которых определяется правилами подключения к системам теплоснабжения, утверждёнными Правительством Российской Федерации, при наличии осуществлённого в надлежащем порядке подключения к системам теплоснабжения многоквартирных домов.

5.2 Обоснование предлагаемых для строительства источников тепловой энергии с комбинированной выработкой тепловой и электрической энергии для обеспечения перспективных тепловых нагрузок

Строительство источников тепловой энергии с комбинированной выработкой тепловой и электрической энергии для обеспечения перспективных тепловых нагрузок не предусматривается ввиду низкой и непостоянной возможной электрической и тепловой нагрузки, которую можно подключить к источнику комбинированной выработки тепловой и электрической энергии. Строительство указанных источников приводит к значительным затратам на строительство и дальнейшую эксплуатацию

подобной установки, то есть является экономически нецелесообразным.

Обоснование предлагаемых для реконструкции котельных для выработки электроэнергии в комбинированном цикле на базе существующих и перспективных тепловых нагрузок

Согласно "Методическим рекомендациям по разработке схем теплоснабжения", утверждённым Министерством регионального развития Российской Федерации № 565/667 от 29.12.2012, предложения по переоборудованию котельных в источники тепловой энергии, работающие в режиме комбинированной выработки электрической и тепловой энергии, рекомендуется разрабатывать при условии, что проектируемая установленная электрическая мощность турбоагрегатов составляет 25 МВт и более. При проектируемой установленной электрической мощности турбоагрегатов менее 25 МВт предложения по реконструкции разрабатываются в случае отказа подключения потребителей к электрическим сетям.

Таким образом, реконструкция котельных для выработки электроэнергии в МО Масальский сельсовет не предусматривается.

Обоснование предлагаемых для реконструкции котельных с увеличением зоны их действия путём включения в неё зон действия существующих источников тепловой энергии

Существующей мощности достаточно для покрытия возможных перспективных нагрузок. Существует возможность увеличения зоны действия котельных путём подключения к ним дополнительных потребителей тепловой энергии.

Также предусматривается ряд мероприятий на котельных МБУ «ЖКХ на территории Масальского сельсовета Локтевского района Алтайского края (таблица 6). Существующие и перспективные балансы тепловой мощности, а также нагрузки по каждой котельной представлены в таблице 4.1.

Обоснование организации индивидуального теплоснабжения в зонах застройки поселения малоэтажными жилыми зданиями

В соответствии с Методическими рекомендациями по разработке схем теплоснабжения, утверждёнными Министерством регионального развития Российской Федерации № 565/667 от 29.12.2012, предложения по организации индивидуального теплоснабжения рекомендуется разрабатывать в зонах застройки поселения малоэтажными жилыми зданиями и плотностью тепловой нагрузки меньше 0,01 Гкал/га.

При подключении индивидуальной жилой застройки к сетям централизованного теплоснабжения низкая плотность тепловой нагрузки и высокая протяжённость тепловых сетей малого диаметра влечёт за собой увеличение тепловых потерь через изоляцию трубопроводов и с утечками теплоносителя высокие финансовые затраты на строительство таких сетей.

Таким образом, рекомендуется организация индивидуального теплоснабжения в зонах застройки поселения малоэтажными жилыми зданиями.

Обоснование организации теплоснабжения в производственных зонах на территории поселения, городского округа

Производственные объекты на территории Масальского сельсовета отапливаются индивидуальными теплоснабжения источниками (собственными котельными). Планируемые строительству объекты К промышленные также рекомендуется отапливать посредством индивидуальных источников.

5.3 Расчёт радиусов эффективного теплоснабжения (зоны действия источников тепловой энергии) в каждой из систем теплоснабжения, позволяющих определить условия, при которых подключение теплопотребляющих установок к системе теплоснабжения нецелесообразно вследствие увеличения совокупных расходов в указанной системе

Радиус эффективного теплоснабжения - максимальное расстояние от

теплопотребляющей установки до ближайшего источника тепловой энергии в системе теплоснабжения, при превышении которого подключение теплопотребляющей установки к данной системе теплоснабжения нецелесообразно по причине увеличения совокупных расходов в системе теплоснабжения.

Подключение дополнительной тепловой нагрузки с увеличением радиуса действия источника тепловой энергии приводит к возрастанию затрат на производство и транспорт тепловой энергии и одновременно к увеличению доходов от дополнительного объёма её реализации. Радиус эффективного теплоснабжения представляет собой то расстояние, при котором увеличение доходов равно по величине возрастанию затрат. Для действующих источников тепловой энергии это означает, что удельные затраты (на единицу отпущенной потребителям тепловой энергии) являются минимальными.

Результаты расчёта эффективного радиуса теплоснабжения котельных приводятся в таблице 6.7.4.

В настоящее время, методика определения радиуса эффективного теплоснабжения не утверждена федеральными органами исполнительной власти в сфере теплоснабжения.

Основными критериями оценки целесообразности подключения новых потребителей в зоне действия системы централизованного теплоснабжения являются:

- затраты на строительство новых участков тепловой сети и реконструкция существующих;
 - пропускная способность существующих тепловых сетей;
 - затраты на перекачку теплоносителя в тепловых сетях;
 - потери тепловой энергии в тепловых сетях при её передаче.

Комплексная оценка вышеперечисленных факторов, определяет величину эффективного радиуса теплоснабжения.

Расчёт эффективного радиуса теплоснабжения определяем согласно допустимому расстоянию от источника тепла до потребителя с заданным уровнем тепловых потерь для двухтрубной теплотрассы.

1) Расчёт годовых тепловых потерь через изоляцию и с утечкой теплоно сителя.

Расчёт годовых тепловых потерь через изоляцию и с утечкой теплоносителя проводится в соответствии с методическими указаниями по составлению энергетических характеристик для систем транспорта тепловой энергии по показателям: тепловые потери и потери сетевой воды СО 15334.20.523 2003 г.

В качестве теплоизоляционного слоя выбран пенополиуретан (ППУ). Время работы тепловой сети в год - более 5000 ч. Предполагая, что ведётся новое строительство теплотрассы, коэффициент старения принят равным 1,0. Длина участка - 100 метров. Расчёт годовых тепловых потерь произведён для трёх типов прокладки тепловых сетей: канальная, бесканальная и надземная по диаметрам трубопроводов от 57 мм до 1020 мм раздельно по подающему и обратному трубопроводу. Температурный график работы тепловых сетей принят 95/70 ° С. Среднемесячные температуры наружного воздуха и грунта - по СНиП 23-01-99 "Строительная климатология". Результаты представлены в таблице 6.7.1.

Таблица 6.7.1 - Годовые тепловые потери трубопроводов с ППУ изоляцией,

Д,	Тип	Тепловые потер Гкал/год	ловые потери на 100 м тепловой сети, ′год			
MM	прокладки	подающий	обратный	С	тепловые потери на 100 мтепловой	
		трубопровод	трубопровод	утечкой	^{сети} (2100 Qnom)	
57	Б	9,642	7,692	0,276	17,610	
	К	7,021	5,601	0,276	12,898	
	Н	10,293	8,778	0,276	19,347	
76	Б	11,234	8,962	0,528	20,724	
	К	8,371	6,679	0,528	15,578	
	Н	11,808	10,141	0,528	22,477	
89	Б	11,866	9,467	0,744	22,077	
	К	9,047	7,217	0,744	17,008	
	Н	12,713	10,897	0,744	24,354	
108	Б	13,486	10,759	1,106	25,351	
	К	9,725	7,757	1,106	18,588	
	Н	13,623	11,654	1,106	26,383	
133	Б	15,414	12,298	1,726	29,438	
	К	11,398	9,093	1,726	22,217	
	Н	15,438	13,166	1,726	30,330	
159	Б	17,358	13,848	2,486	33,692	

	К	11,556	9,220	2,486	23,262
	Н	16,248	13,925	2,486	32,659
219	Б	21,171	16,889	4,738	42,798
	К	14,470	11,543	4,738	30,751
	Н	19,439	16,682	4,738	40,859
273	Б	25,410	20,270	7,416	53,096
	К	16,708	13,331	7,416	37,455
	Н	22,344	19,295	7,416	49,055
325	Б	28,943	23,089	10,558	62,590
	К	18,637	14,867	10,558	44,062
	Н	26,698	23,216	10,558	60,472
373	Б	32,217	25,701	13,936	71,854
	К	20,406	16,277	13,936	50,619
	Н	30,182	26,298	13,936	70,416
426	Б	36,051	28,759	18,950	83,760
	К	22,480	17,934	18,950	59,364
	Н	33,082	28,729	18,950	80,761
478	Б	39,260	31,320	24,006	94,586
	К	24,761	19,753	24,006	68,520
	Н	35,986	31,342	24,006	91,334
530	Б	43,146	34,420	29,554	107,120
	К	26,676	21,281	29,554	77,511
	Н	38,890	33,956	29,554	102,400
630	Б	49,552	39,529	41,948	131,029
	К	30,532	24,357	41,948	96,837
	Н	44,698	39,185	41,948	125,831

Анализ результатов позволяет сделать вывод о том, что при реконструкции тепловых сетей с заменой трубопроводов с традиционной изоляцией на трубопроводы с ППУ изоляцией необходимо, по возможности, укладывать новые трубопроводы на скользящие опоры в существующие каналы из железобетонных лотков без последующей засыпки песком последних.

2) Определение пропускной способности трубопроводов водяных тепловых сетей.

Пропускная способность Q^{DI} определена по таблице 6.7.5 в Гкал/час при температурном графике 95/70 °C при следующих условиях: $\kappa_9 = 0.5$ мм, y = 958,4 кгс/м 2 и удельных потерях давления на трение Ah = 10 кгс/м 2 • м. Нагрузка по каждой котельной, а также соответствующий этой нагрузке условный проход труб D_y представлены в таблице 6.7.2.

Таблица 6.7.2 - Нагрузка, условный проход труб котельных

		1 7 7 7	1 1 1 2	
Наименование		Нагрузк	Условный	Годовой
котельной		a Q ^{DI} , Гкал/час	проход труб	отпуск, Qгод, Гкал
Котельная,	Π.	0,5829	100	2881,858
Масальский				

3) Годовой отпуск тепловой энергии через трубопровод.

Годовой отпуск определяется по формуле

Qгод = $Q^{Dt} * \Pi * 24$,

где Q^{DI} - перспективная нагрузка, Гкал/ч;

п - продолжительность отопительного периода, значение которой примем 225 дням согласно СНиП 23-01-99* (СП 131.13330.2012 «Строительная климатология» Актуализированная версия) по г. Рубцовск.

Годовой отпуск также представлен в таблице 6.7.2.

4) Определение годовых тепловых потерь в соответствии с заданным уровнем.

Примем заданный уровень тепловых потерь равным 5% от годового отпуска тепловой энергии (таблица 6.7.3).

энерги	(таолица	
Наименование	Годовой	Годовые потери
котельной	отпуск,	Q_{m}^{D}
Котельная, г	. 2881,858	144,093
Масальский		

5) Определение допустимого расстояния двухтрубной теплотрассы постоянного сечения с заданным уровнем потерь.

Учитывая, что годовые потери тепловой энергии зависят от длины трубопровода линейно, определяем допустимую длину теплотрассы постоянного сечения (таблица 6.7.4) по следующей формуле

ЩОп = QDL * 100/Z100 QDL,

где Xi_{00} Q^Om - суммарные тепловые потери на 100 метрах трассы (таблица 6.7.1).

Таблица 6.7.4 - Радиус эффективного теплоснабжения котельных

Наименование		Годовые	Фактический	Эффективный		
котельной		потери	р ^а д ^и у ^с Ьфат ^м	р ^а д ^и у ^с L ^{DT} dom		
Котельная,	П.	25,529	н/д	564,428		
Масальский						

Целесообразно откорректировать величину радиуса эффективного теплоснабжения при очередной актуализации схемы теплоснабжения МО Масальский сельсовет, после освидетельствования тепловых энергоустановок в соответствии с Письмом Министерства регионального развития РФ от 26 апреля 2012 г. № 9905-АП/14 "О Методических рекомендациях по определению технического состояния систем теплоснабжения, горячего водоснабжения, холодного водоснабжения и водоотведения путём проведения освидетельствования", и разработки энергетических характеристик тепловых сетей по следующим показателям: тепловые потери, потери теплоносителя, пропускная способность трубопроводов водяных тепловых сетей и среднечасовой расход сетевой воды, разность температур в подающем и обратном трубопроводах.

Пропускная способность в Пропускная способность, Гкал/час при температурных графиках в °C Табли т/час при удельной потере 150 - 70 180 - 70 95 - 70 давление на трение Ah, кгс/м² • м Удельная потеря давления на трение Ah, кгс/м² • м 5 10 15 20 5 10 15 20 10 15 20 5 10 15 20 0,07 0,04 0,011 0,017 0.04 25 0,45 0,68 0,82 0.95 0.05 0,08 0,03 0,05 0.06 0,02 0,024 32 0,82 1,16 1,42 1,54 0,07 0.09 0,11 0,12 0,05 0,07 80,0 0,09 0,02 0,029 0,025 0,028 0,035 40 0,38 1,94 2,4 2,75 0,11 0,15 0,19 0,22 0,08 0,12 0,14 0,16 0,05 0,06 0,07 4,95 0,34 0,4 0,21 0,26 0,06 0,09 50 2,45 3,5 4,3 0,2 0,28 0,15 0,3 0,11 0,12 70 5,8 8,4 10,2 11,7 0,47 0,67 0,82 0,94 0,35 0,57 0,61 0,7 0,15 0,21 0,25 0,29 80 9,4 13,2 16,2 0,75 1,3 1,5 0,79 0,97 0,23 0,33 0,47 18,6 1,05 0,56 1,1 0,4 100 15,6 22 27,5 31,5 1,25 1,75 2,2 2,5 0,93 1,32 1,65 1,9 0,39 0,55 0,68 0,79 2,2 125 28 40 49 56 3,2 3,9 4,5 1,7 2,4 2,9 3,4 0,7 1 1,23 1,4 64 79 93 3,7 4,7 150 46 5,1 6,3 7,5 2,8 3,8 5,6 1,15 1,6 1,9 2,3 79 9 175 112 138 157 6,3 12,5 4,7 6,7 8,3 9,4 0,9 2,8 3,4 3,9 11 107 200 152 186 215 8,6 12 15 17 11 2,7 3,8 4,7 6,4 9,1 13 5,4 250 180 275 330 380 14 22 26 30 11 16 20 23 300 310 430 530 600 25 34 42 48 19 26 32 36 350 455 640 790 910 36 51 63 73 27 68 47 55 660 930 1150 1320 53 75 92 106 40 59 79 400 69

450	900	1280	1560	1830	72	103	125	147	54	77	93	110	-	-	-	-
500	1200	1690	2050	2400	96	135	164	192	72	102	123	144	-	-	-	-
600	1880	2650	3250	3800	150	212	260	304	113	159	195	228	-	-	-	-
700	2700	3800	4600	5400	216	304	368	432	162	228	276	324	-	-	-	-
800	3800	5400	6500	7700	304	443	520	615	228	324	390	460	-	-	-	-
900	5150	7300	8800	10300	415	585	705	825	310	437	527	617	ı	1	•	-
1000	6750	9500	11600	13500	540	760	930	1080	405	570	558	810	ı	1	•	-
1200	10700	15000	18600	21500	855	1200	1490	1750	640	900	1100	1290	ı	-	-	-
1400	16000	23000	28000	32000	1280	1840	2240	2560	960	1380	1680	1920	ı	ı	-	-

Таблица 7 - Мероприятия на тепловых сетях МБУ «ЖКХ» МО Масальский сельсовет и затраты на их внедрение

Наименование планируемого мероприятия	Наимен	ование	Назначени	Наружный	Длина,	Затраты на	Год
	VUSCTVS		e	диаметр,	М	мероприятие	внедрения
	Начал	Конец		MM	IVI	(с НДС), тыс.	,
	О					руб.	год
Программа мероприятий на первую очередь							
Реконструкция участка трубопровода тепловой	TK2	TK5	под.	159	48,90	107,967	2018
сети котельной, п. Масальский на трубопровод из	TK5	TK6					
полипропилена с изменением диаметра на D _H = 110	TK5	TK2	обр.	159	48,90		
ММ	TK6	TK5					
Реконструкция участка трубопровода тепловой	TK6	TK8	под.	159	52,50	115,679	2019
сети котельной, п. Масальский на трубопровод из	TK8	TK10					
полипропилена с изменением диаметра на D _H = 110	TK10	TK11					
мм	TK8	TK6	обр.	159	52,50		
	TK10	TK8	-				
	TK11	TK10					
Реконструкция участка трубопровода тепловой	TK35	TK37	под.	159	44,70	57,969	2020
сети котельной, п. Масальский на трубопровод из							
полипропилена с изменением диаметра на $D_H = 90$	TK37	TK35	обр.	159	44,70		
MM							
Реконструкция участка трубопровода тепловой		TK37	под.	57	34,10	42,997	2020
сети котельной, п. Масальский на трубопровод из	1101	TK38		159			
полипропилена с изменением диаметра на D _H = 75	TK37	TK37	обр.	57	34,10		
ММ	TK38	TK37		159			

Реконструкция участка трубопровода тепловой сети котельной, п. Масальский на трубопровод из		TK29	под.	76	51,20	103,443	2021
полипропилена с изменением диаметра на $D_H = 90$		TK2	обр.	76	51,20		
мм Реконструкция участка трубопровода тепловой	TV20	TK30	ПОП	76	9,00	17,697	2021
сети котельной, п. Масальский на трубопровод из		TNOU	под.	70	9,00	17,097	2021
полипропилена с изменением диаметра на $D_H = 40$		TK29	обр.	76	9,00		
мм Программа мероприятий на вторую очередь							
Реконструкция участка трубопровода тепловой сети котельной, п. Масальский на трубопровод из		TK31	под.	76	28,60	56,205	2022
полипропилена с изменением диаметра на D _H = 75		TK29	обр.	76	28,60		
Реконструкция участка трубопровода тепловой сети котельной, п. Масальский на трубопровод из		ТК32	под.	76	34,10	66,902	2022
полипропилена с изменением диаметра на D _H = 63		TK31	обр.	76	34,10		

6.1 Реконструкция и строительство тепловых сетей, обеспечивающих перераспределение тепловой нагрузки из зон с дефицитом тепловой мощности в зоны с избытком тепловой мощности (использование

существующих резервов)

В связи с тем, что дефицитов тепловой мощности на территории МО Масальский сельсовет не выявлено, реконструкция и строительство тепловых сетей, обеспечивающих перераспределение тепловой нагрузки из зон с дефицитом тепловой мощности в зоны с избытком тепловой мощности, не предусматривается.

Строительство тепловых сетей для обеспечения перспективных

приростов тепловой нагрузки под жилищную, комплексную или производственную застройку во вновь осваиваемых районах поселения

Для жилищной, комплексной или производственной застройки во вновь осваиваемых районах поселения предусматривается индивидуальное теплоснабжение (собственные котельные).

Строительство тепловых сетей, обеспечивающих условия, при наличии которых существует возможность поставок тепловой энергии потребителям от различных источников тепловой энергии при сохранении надёжности теплоснабжения

Строительство тепловых сетей, обеспечивающих поставки тепловой энергии от различных источников тепловой энергии, не предполагается, потому что источники тепловой энергии работают независимо друг от друга (гидравлически развязаны).

6.2 Строительство или реконструкция тепловых сетей для повышения эффективности функционирования системы теплоснабжения, в том числе за счёт перевода котельных в пиковый режим работы или ликвидации котельных

Строительство или реконструкция тепловых сетей за счёт перевода котельных в пиковый режим не предусматривается, так как отсутствуют пиковые водогрейные котельные. Повышение эффективности функционирования системы теплоснабжения обеспечивают мероприятия по реконструкции тепловых сетей в связи с окончанием срока службы, а также восстановление изоляции (снижение фактических и нормативных потерь тепловой энергии через изоляцию трубопроводов при передаче тепловой энергии).

6.3 Строительство тепловых сетей для обеспечения нормативной надёжности теплоснабжения

Строительство тепловых сетей для обеспечения нормативной надёжности не предполагается. Необходимые показатели надёжности достигаются за счёт реконструкции трубопроводов в связи с окончанием срока службы.

6.4. Реконструкция тепловых сетей с увеличением диаметра трубопроводов для обеспечения перспективных приростов тепловой нагрузки

Для разработки предложений по строительству и реконструкции тепловых сетей требуется:

- разработать гидравлические режимы передачи теплоносителя по тепловым сетям с перспективной (на последний год перспективного периода) тепловой нагрузкой в существующей зоне действия источника тепловой энергии;
- определить участки тепловых сетей, ограничивающих пропускную способность тепловых сетей;
- разработать график изменения температур в подающем теплопроводе тепловых сетей, в каждой зоне действия источника тепловой энергии.

6.5Реконструкция тепловых сетей, подлежащих замене в связи с исчерпанием эксплуатационного ресурса

На территории Масальского сельсовета предусматривается реконструкция для 606,20 м тепловых сетей в однотрубном исчислении для котельной, п. Масальский МБУ

«ЖКХ» по результатам технического освидетельствования тепловой сети.

В первую очередь (с 2017 по 2021 г. г.) предусматривается реконструкция для 480,80 м тепловой сети в однотрубном исчислении по результатам технического освидетельствования тепловой сети.

Необходимо провести техническое освидетельствование всех тепловых сетей, находящихся в управлении предприятия на основании договора аренды муниципального имущества.

Затраты на реконструкцию различных участков трубопроводов тепловой сети (таблица 7) были определены в программном комплексе РИК, предназначенном для автоматизированного выпуска сметной документации.

6.6 Строительство и реконструкция насосных станций

Насосные станции проектом не предусмотрены.

Ввиду отсутствия данных по техническому состоянию трубопроводов и оборудования тепловых сетей (нет результатов технического освидетельствования с определением остаточного ресурса) очевидно в первую очередь необходимо выполнить мероприятия, по результатам которых разрабатываются предложения по реконструкции тепловых сетей с увеличением (уменьшением) диаметра или предложения по строительству подкачивающих насосных станций для выбранного графика регулирования отпуска тепловой энергии в тепловые сети:

- провести техническое освидетельствование тепловых сетей в соответствии с письмом Министерства регионального развития РФ от 26 апреля 2012 г. № 9905-АП/14 "О Методических рекомендациях по определению технического состояния систем теплоснабжения, горячего водоснабжения, холодного водоснабжения и водоотведения путём проведения освидетельствования";
- определить фактические гидравлические характеристики тепловых сетей (провести испытания на гидравлические потери в соответствии с п. 6.2.32.ПТЭ тепловых энергоустановок);
- выполнить расчёты гидравлических режимов тепловых сетей с учётом фактических гидравлических характеристик для выбранного графика регулирования отпуска тепловой энергии в тепловые сети;
- разработать предложения по строительству и реконструкции тепловых сетей для обеспечения перспективных приростов тепловой нагрузки МО под застройку;
- обосновать предложения по реконструкции тепловых сетей для обеспечения нормативной эффективности и надёжности теплоснабжения;
- определить финансовые потребности для реализации предложений по реконструкции тепловых сетей с целью установления устойчивого гидравлического режима циркуляции теплоносителя с перспективными тепловыми нагрузками, для выбранного графика регулирования отпуска тепловой энергии в тепловые сети.

Раздел находится в разработке в связи с отсутствием полных данных по сетям теплоснабжения.

Целью настоящего раздела является:

- описание показателей, определяемых в соответствии с методическими указаниями по расчёту уровня надёжности и качества поставляемых товаров, оказываемых услуг для организаций, осуществляющих деятельность по производству и (или) передаче тепловой энергии;
 - анализ аварийных отключений потребителей;
- анализ времени восстановления теплоснабжения потребителей после аварийных отключений;
- графические материалы (карты-схемы тепловых сетей и зон не нормативной надёжности и безопасности теплоснабжения).

7. Глава 7. Оценка надёжности теплоснабжения выполняется с целью разработки предложений по реконструкции тепловых сетей, не обеспечивающих нормативной надёжности теплоснабжения.

Оценка надёжности теплоснабжения разрабатываются в соответствии с подпунктом "и" пункта 19 и пункта 46 Требований к схемам теплоснабжения. Нормативные требования к надёжности теплоснабжения установлены в СНиП 41.02.2003 "Тепловые сети" в части пунктов 6.27 - 6.31 раздела "Надёжность".

В СНиП 41.02.2003 надёжность теплоснабжения определяется по способности проектируемых и действующих источников теплоты, тепловых сетей и в целом систем централизованного теплоснабжения обеспечивать в течение заданного времени требуемые режимы, параметры и качество теплоснабжения (отопления, вентиляции, горячего водоснабжения, а также технологических потребностей предприятий в паре и горячей воде) обеспечивать нормативные показатели вероятности безотказной работы [Р], коэффициент готовности [К_г], живучести [Ж].

Расчёт показателей системы с учётом надёжности должен производиться для каждого потребителя. При этом минимально допустимые показатели вероятности безотказной работы следует принимать для:

- источника теплоты $P_{NT} = 0.97$;
- тепловых сетей P_{TC} = 0,9;
- потребителя теплоты $P_{\Pi T} = 0.99;$
- СЦТ в целом P_{C} ЦТ = 0,9 0,97 0,99 = 0,86.

Нормативные показатели безотказности тепловых сетей обеспечиваются следующими мероприятиями:

- установлением предельно допустимой длины нерезервированных участков теплопроводов (тупиковых, радиальных, транзитных) до каждого потребителя или теплового пункта;
- местом размещения резервных трубопроводных связей между радиальными теплопроводами;
- достаточностью диаметров выбираемых при проектировании новых или реконструируемых существующих теплопроводов для обеспечения резервной подачи теплоты потребителям при отказах;
- необходимость замены на конкретных участках конструкций тепловых сетей и теплопроводов на более надёжные, а также обоснованность перехода на надземную или тоннельную прокладку;
- очерёдность ремонтов и замен теплопроводов, частично или полностью утративших свой ресурс.

Готовность системы теплоснабжения к исправной работе в течение отопительного периода определяется по числу часов ожидания готовности: источника теплоты, тепловых сетей, потребителей теплоты, а также - числу часов нерасчётных температур наружного воздуха в данной местности.

Минимально допустимый показатель готовности СЦТ к исправной работе K_r принимается 0,97.

Нормативные показатели готовности систем теплоснабжения обеспечиваются следующими мероприятиями:

- готовностью СЦТ к отопительному сезону;
- достаточностью установленной (располагаемой) тепловой мощности источника тепловой энергии для обеспечения исправного функционирования СЦТ при нерасчётных похолоданиях;

- способностью тепловых сетей обеспечить исправное функционирование СЦТ при нерасчётных похолоданиях;
- организационными и техническими мерами, необходимыми для обеспечения исправного функционирования СЦТ на уровне заданной готовности;
- максимально допустимым числом часов готовности для источника теплоты. Потребители теплоты по надёжности теплоснабжения делятся на три категории:

Первая категория - потребители, не допускающие перерывов в подаче расчётного количества теплоты и снижения температуры воздуха в помещениях ниже предусмотренных ГОСТ 30494.

Например, больницы, родильные дома, детские дошкольные учреждения с круглосуточным пребыванием детей, картинные галереи, химические и специальные производства, шахты и т.п.

Вторая категория - потребители, допускающие снижение температуры в отапливаемых помещениях на период ликвидации аварии, но не более 54 ч:

- жилых и общественных зданий до 12° С;
- промышленных зданий до 8° C.

Третья категория - остальные потребители.

Термины и определения

Термины и определения, используемые в данном разделе, соответствуют определениям ГОСТ 27.002-89 "Надёжность в технике".

Надёжность - свойство участка тепловой сети или элемента тепловой сети сохранять во времени в установленных пределах значения всех параметров, характеризующих способность обеспечивать передачу теплоносителя в заданных режимах и условиях применения и технического обслуживания. Надёжность тепловой сети и системы теплоснабжения является комплексным свойством, которое в зависимости от назначения объекта и условий его применения может включать безотказность, долговечность, ремонтопригодность и сохраняемость или определенные сочетания этих свойств.

Безотказность - свойство тепловой сети непрерывно сохранять работоспособное состояние в течение некоторого времени или наработки;

Долговечность - свойство тепловой сети или объекта тепловой сети сохранять работоспособное состояние до наступления предельного состояния при установленной системе технического обслуживания и ремонта;

Ремонтопригодность - свойство элемента тепловой сети, заключающееся в приспособленности к поддержанию и восстановлению работоспособного состояния путём технического обслуживания и ремонта;

Исправное состояние - состояние элемента тепловой сети и тепловой сети в целом, при котором он соответствует всем требованиям нормативнотехнической и (или) конструкторской (проектной) документации;

Неисправное состояние - состояние элемента тепловой сети или тепловой сети в целом, при котором он не соответствует хотя бы одному из требований нормативнотехнической и (или) конструкторской (проектной) документации;

Работоспособное состояние - состояние элемента тепловой сети или тепловой сети в целом, при котором значения всех параметров, характеризующих способность выполнять заданные функции, соответствуют требованиям нормативно-технической и (или) конструкторской (проектной) документации;

Неработоспособное состояние - состояние элемента тепловой сети, при котором значение хотя бы одного параметра, характеризующего способность выполнять заданные функции, не соответствует требованиям нормативнотехнической и (или) конструкторской (проектной) документации. Для сложных объектов возможно деление их неработоспособных состояний. При этом из множества неработоспособных состояний выделяют частично неработоспособные состояния, при которых тепловая

сеть способна частично выполнять требуемые функции;

Предельное состояние - состояние элемента тепловой сети или тепловой сети в целом, при котором его дальнейшая эксплуатация недопустима или нецелесообразна, либо восстановление его работоспособного состояния невозможно или нецелесообразно;

Критерий предельного состояния - признак или совокупность признаков предельного состояния элемента тепловой сети, установленные нормативнотехнической и (или) конструкторской (проектной) документацией. В зависимости от условий эксплуатации для одного и того же элемента тепловой сети могут быть установлены два и более критериев предельного состояния;

Повреждение - событие, заключающееся в нарушении исправного состояния объекта при сохранении работоспособного состояния;

Отказ - событие, заключающееся в нарушении работоспособного состояния элемента тепловой сети или тепловой сети в целом:

Критерий отказа - признак или совокупность признаков нарушения работоспособного состояния тепловой сети, установленные в нормативнотехнической и (или) конструкторской (проектной) документации.

Для целей перспективной схемы теплоснабжения термин "отказ" будет использован в следующих интерпретациях:

- отказ участка тепловой сети событие, приводящее к нарушению его работоспособного состояния (т.е. прекращению транспорта теплоносителя по этому участку в связи с нарушением герметичности этого участка);
- отказ теплоснабжения потребителя событие, приводящее к падению температуры в отапливаемых помещениях жилых и общественных зданий ниже +12°C, в промышленных зданиях ниже +8°C (СНиП 41-02-2003 Тепловые сети).

При разработке схемы теплоснабжения для описания надёжности термины "повреждение" и "инцидент" будут употребляться только в отношении событий, к которым может быть применена процедура отложенного ремонта, потому что в соответствии с ГОСТ 27.002-89 эти события не приводят к нарушению работоспособности участка тепловой сети и, следовательно, не требуют выполнения незамедлительных ремонтных работ с целью восстановления его работоспособности. К таким событиям относятся зарегистрированные "свищи" на прямом или обратном теплопроводах тепловых сетей. Тем не менее, ремонтные работы по ликвидации свищей требуют прерывания теплоснабжения (если нет вариантов подключения резервных теплопроводов), и в этом смысле они аналогичны "отложенным" отказам.

Мы также не будем употреблять термин "авария", так как это характеристика "тяжести" отказа и возможных последствий его устранения. Все упомянутые в этом абзаце термины устанавливают лишь градацию (шкалу) отказов.

Расчет надёжности теплоснабжения не резервируемых участков тепловой сети

В соответствии со СНиП 41 -02-2003 расчёт надёжности теплоснабжения должен производиться для каждого потребителя, при этом минимально допустимые показатели вероятности безотказной работы следует принимать для:

- источника теплоты $P_{\rm NT} = 0.97$;
- тепловых сетей $P_{TC} = 0.9$;
- потребителя теплоты $P_{\Pi T} = 0.99$;
- СЦТ в целом P_{C} ц $_{T}$ = 0,9 0,97 0,99 = 0,86.

Расчёт вероятности безотказной работы тепловой сети по отношению к каждому потребителю осуществляется по следующему алгоритму:

- 1) Определяется путь передачи теплоносителя от источника до потребителя, по отношению к которому выполняется расчёт вероятности безотказной работы тепловой сети.
 - 2) На первом этапе расчёта устанавливается перечень участков

теплопроводов, составляющих этот путь.

- 3) Для каждого участка тепловой сети устанавливаются: год его ввода в эксплуатацию, диаметр и протяжённость.
- 4) На основе обработки данных по отказам и восстановлениям (времени, затраченном на ремонт участка) всех участков тепловых сетей за несколько лет их работы устанавливаются следующие зависимости:
- Я₀ средневзвешенная частота (интенсивность) устойчивых отказов участков в конкретной системе теплоснабжения при продолжительности эксплуатации участков от 3 до 17 лет (1/км/год);
- средневзвешенная частота (интенсивность) отказов для участков тепловой сети с продолжительностью эксплуатации от 1 до 3 лет;
- средневзвешенная частота (интенсивность) отказов для участков тепловой сети с продолжительностью эксплуатации от 17 и более лет;
- средневзвешенная продолжительность ремонта (восстановления) участков тепловой сети:
- средневзвешенная продолжительность ремонта (восстановления) участков тепловой сети в зависимости от диаметра участка.

Частота (интенсивность) отказов каждого участка тепловой сети измеряется с помощью показателя, который имеет размерность (1 /км/год) или (1/км/час). Интенсивность отказов всей тепловой сети (без резервирования) по отношению к потребителю представляется как последовательное (в смысле надёжности) соединение элементов, при котором отказ одного из всей совокупности элементов приводит к отказу всей системы в целом. Средняя вероятность безотказной работы системы, состоящей из последовательно-соединённых элементов, будет равна произведению вероятностей безотказной работы:

= N

$$^{p} = = e^{-1} \wedge ^{X} e^{X} \dots e^{-\Lambda^{\Pi_{1}\Pi}} = e^{-\langle ^{X}Tb} = e^{*}$$

=1

Интенсивность отказов всего последовательного соединения равна сумме интенсивностей отказов на каждом участке $X_c = L_1 X_1 + L_2 X_2 + ... + L_n A^n$ (1/час), где L_1 - протяжённость каждого участка, (км). И, таким образом, чем выше значение интенсивности отказов системы, тем меньше вероятность безотказной работы. Параметр времени в этих выражениях всегда равен одному отопительному периоду, т.е. значение вероятности безотказной работы вычисляется как некоторая вероятность в конце каждого рабочего цикла (перед следующим ремонтным периодом).

Интенсивность отказов каждого конкретного участка может быть разной, но самое главное, она зависит от времени эксплуатации участка (важно: не в процессе одного отопительного периода, а времени от начала его ввода в эксплуатацию). В нашей практике для описания параметрической зависимости интенсивности отказов мы применяем зависимость от срока эксплуатации, следующего вида, близкую по характеру к распределению Вейбулла:

$$= A_0(0.1T)^a$$

где т - срок эксплуатации участка, лет.

Характер изменения интенсивности отказов зависит от параметра а: при а <1 она монотонно убывает, при а > 1 - возрастает; при а = 1 функция принимает вид = $Я_0$ = Const. A $Я_0$ - это средневзвешенная частота (интенсивность) устойчивых отказов в конкретной системе теплоснабжения.

Обработка значительного количества данных по отказам, позволяет использовать следующую зависимость для параметра формы интенсивности отказов:

С 0,8 при 0 < т < 3;
$$_a$$
 =| 1 при 3 < т < 17;

$$(Д5 \cdot e^{2})$$
 при $\tau > 17$.

На рисунке 8 приведён вид зависимости интенсивности отказов от срока

эксплуатации участка тепловой сети. При её использовании следует помнить о некоторых допущениях, которые были сделаны при отборе данных:

- она применима только тогда, когда в тепловых сетях существует чёткое разделение на эксплуатационный и ремонтный периоды;
- в ремонтный период выполняются гидравлические испытания тепловой сети после каждого отказа.

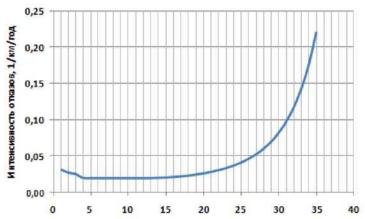


Рисунок 8 - Интенсивность отказов в зависимости от срока эксплуатации участка тепловой сети

По данным региональных справочников по климату о среднесуточных температурах наружного воздуха за последние десять лет строят зависимость повторяемости температур наружного воздуха (график продолжительности тепловой нагрузки отопления). При отсутствии этих данных зависимость повторяемости температур наружного воздуха для местоположения тепловых сетей принимают по данным СНиП 2.01.01.82 или Справочника "Наладка и эксплуатация водяных тепловых сетей ".

С использованием данных о теплоаккумулирующей способности абонентских установок определяют время, за которое температура внутри отапливаемого помещения снизится до температуры, установленной в критериях отказа теплоснабжения. Отказ теплоснабжения потребителя - событие, приводящее к падению температуры в отапливаемых помещениях жилых и общественных зданий ниже +12 °C, в промышленных зданиях ниже +8°C (СНиП 41-02-2003 Тепловые сети). Например, для расчёта времени снижения температуры в жилом здании используют формулу

$$_{\rm t}$$
 ' $_{\rm -t}$ $_{\rm -Q0}$ Qo $^{\rm B\,H}$ qoV $^{\rm B\,H}$ qoV exp(г/Ю '

где $t_{\rm e}$ - внутренняя температура, которая устанавливается в помещении через время z в часах, после наступления исходного события, °C;

z - время, отсчитываемое после начала исходного события, ч; t_s - температура в отапливаемом помещении, которая была в момент начала исходного события, °C;

t_н - температура наружного воздуха, усреднённая на период времени z, °C;

 Q_0 - подача теплоты в помещение, Дж/ч;

 $\mathsf{U}_0 \mathsf{V}$ - удельные расчётные тепловые потери здания, Дж/(ч • °C);

Р - коэффициент аккумуляции помещения (здания), ч.

Для расчёта времени снижения температуры в жилом здании до +12 °C

при внезапном прекращении теплоснабжения эта формула при = 0 имеет следующий вид

где t_s - внутренняя температура которая устанавливается критерием отказа теплоснабжения (+12°C в жилых зданиях).

Расчёт проводится для каждой градации повторяемости температуры наружного воздуха, например, для города N (таблица 8) при коэффициенте аккумуляции жилого здания P = 40 часов.

Таблица 8 - Расчёт времени снижения температуры внутри отапливаемого помещения

Температура наружного	Повторяемость	Время снижения			
воздуха, °С	температур наружного	температуры воздуха			
	воздуха, час	внутри отапливаемого			
-50,0	0	3,7			
-47,5	0	3,8			
-42,5	0	4,28			
-37,5	0	4,6			
-32,5	0	5,1			
-27,5	2	5,7			
-22,5	19	6,4			
-17,5	240	7,4			
-12,5	759	8,8			
-7,5	1182	10,8			
-2,5	1182	13,9			
2,5	1405	19,6			
7,5	803	33,9			

На основе данных о частоте (потоке) отказов участков тепловой сети, повторяемости температур наружного воздуха и данных о времени восстановления (ремонта) элемента (участка, НС, компенсатора и т.д.) тепловых сетей определяют вероятность отказа теплоснабжения потребителя. В случае отсутствия достоверных данных о времени восстановления теплоснабжения потребителей используют эмпирическую зависимость для времени, необходимом для ликвидации повреждения, предложенную Е. Я. Соколовым

 $z_p = a \cdot [1 + (b + c \cdot l_{C'3})D^{1,2}]$, где a, b, c - постоянные коэффициенты, зависящие от способа укладки теплопровода (подземные, надземный) и его конструкции, а также от способа диагностики места повреждения и уровня организации ремонтных работ;

1_{C3} - расстояние между секционирующими задвижками, м;

D - условный диаметр трубопровода, м.

Расчёт выполняется для каждого участка и/или элемента, входящего в путь от источника до абонента.

Расчёт будет выполнен на основании утверждённой инвестиционной программы теплоснабжающей и теплосетевой организации, осуществляющей деятельность на территории поселения.

7.1. Сценарий развития аварий в системах теплоснабжения с моделированием гидравлических режимов таких систем, в том числе при отказе элементов тепловых сетей и при аварийных режимах работы систем теплоснабжения связанных с прекращением подачи тепловой энергии

трекращением подач	и тепловой энергий
Место и вид	Последовательность выполнения операций
инцидента	по ликвидации инцидента
1	2
1. Порыв	1.1 Характерным признаком утечки воды из теплосети является
магистрального	увеличение объема подпиточной воды в котельной, которая
трубопровода	поддерживает давление в обратной магистрали.
теплосети	1.2 Машинисту(кочегару) принять все меры по обеспечению
	подпитки теплосети и поддержания устойчивого гидравлического режима.
	1.3 Если подпитка продолжает увеличиваться и стала в 2 раза
	выше нормы, то машинист(кочегар) об этом сообщает директору.
	1.4 По решению директора МБУ «ЖКХ» слесарь по
	обслуживанию теплосетей МБУ «ЖКХ» (по распоряжению
	директора) закрывает задвижки №1 и №2 на подающем и
	обратном трубопроводах поврежденного участка.
	1.5 Время устранения аварии (согласно расчету допустимого
	времени устранения аварии и восстановления теплоснабжения)
	при температуре наружного воздуха -20°C допустимо до 11 ч
	(при T _{н.в.} = -30°C – до 8 ч, при Т _{н.в.} = 0°C – до 24 ч).
2. Прекращение	2.1 Аварийно остановить работающее оборудование согласно
подачи	инструкций по эксплуатации.
электрической	2.2 Машинист (кочегар) котельной сообщает об этом директору.
энергии в	2.3 Директор связывается с электросетевой организацией по
котельную	поводу выяснения причины и продолжительности отсутствия напряжения.
	2.4 После подачи электроэнергии, восстановить рабочие
	параметры тепловой сети и включить остановленное
	оборудование в работу.
3 Прекращение	3.1 По котельной максимально снизить нагрузку на работающие
подачи воды	котлы до выработки всего запаса воды.
	3.2 Остановить работающие котлы согласно инструкций по
	эксплуатации.
	3.3 Машинист (кочегар) котельной сообщает об этом директору
4 Выход из строя	4.1 Отключить котел от действующей системы теплоснабжения
котлоагрегата	и перейти на резервный.

- 8. Глава 8 Обоснование предложения по определению единой теплоснабжающей организации
- В соответствии со статьёй 2 пунктом 28 Федерального закона 190 "О теплоснабжении":

"Единая теплоснабжающая организация в системе теплоснабжения (далее единая теплоснабжающая организация) - теплоснабжающая организация, которая определяется в схеме теплоснабжения федеральным органом исполнительной власти,

уполномоченным Правительством Российской Федерации на реализацию государственной политики в сфере теплоснабжения (далее - федеральный орган исполнительной власти, уполномоченный на реализацию государственной политики в сфере теплоснабжения), или органом местного самоуправления на основании критериев и в порядке, которые установлены правилами организации теплоснабжения, утверждёнными Правительством Российской Федерации".

В соответствии со статьёй 6 пунктом 6 Федерального закона 190 "О теплоснабжении":

"К полномочиям органов местного самоуправления поселений, городских округов по организации теплоснабжения на соответствующих территориях относится утверждение схем теплоснабжения поселений, городских округов с численностью населения менее пятисот тысяч человек, в том числе определение единой теплоснабжающей организации".

Предложения по установлению единой теплоснабжающей организации осуществляются на основании критериев определения единой теплоснабжающей организации, установленных в правилах организации теплоснабжения, утверждаемых Правительством Российской Федерации.

Предлагается использовать для этого нижеследующий раздел Постановления Правительства Российской Федерации "Об утверждении правил организации теплоснабжения", предложенный к утверждению Правительством

Российской Федерации в соответствии со статьёй 4 пунктом 1 ФЗ 190 "О теплоснабжении":

Критерии и порядок определения единой теплоснабжающей организации:

- 1. Статус единой теплоснабжающей организации присваивается органом местного самоуправления или федеральным органом исполнительной власти (далее уполномоченные органы) при утверждении схемы теплоснабжения поселения, городского округа, а в случае смены единой теплоснабжающей организации при актуализации схемы теплоснабжения.
- 2. В проекте схемы теплоснабжения должны быть определены границы зон деятельности единой теплоснабжающей организации (организации). Границы зоны (зон) деятельности единой теплоснабжающей организации (организаций) определяются границами систем теплоснабжения, в отношении которой присваивается соответствующий статус.
- 3. Для присвоения статуса единой теплоснабжающей организации впервые на территории поселения, городского округа, лица, владеющие на праве собственности или ином законном основании источниками тепловой энергии и (или) тепловыми сетями на территории поселения, городского округа вправе подать в течение одного месяца с даты размещения на сайте поселения, городского округа, значения проекта теплоснабжения федерального схемы в орган самоуправления заявки на присвоение статуса единой теплоснабжающей организации с указанием зоны деятельности, в которой указанные лица планируют исполнять функции единой теплоснабжающей организации. Орган местного самоуправления обязан разместить сведения о принятых заявках на сайте поселения, городского округа.
- случае отношении одной 4. B если В зоны деятельности единой теплоснабжающей организации подана одна заявка от лица, владеющего на праве собственности или ином законном основании источниками тепловой энергии и (или) тепловыми сетями в соответствующей системе теплоснабжения, то статус единой теплоснабжающей организации присваивается указанному лицу. В случае если в отношении одной зоны деятельности единой теплоснабжающей организации подано несколько заявок от лиц, владеющих на праве собственности или ином законном источниками тепловой энергии (или) тепловыми основании И

соответствующей системе теплоснабжения, орган местного самоуправления присваивает статус единой теплоснабжающей организации в соответствии с критериями настоящих Правил.

- 5. Критериями определения единой теплоснабжающей организации являются:
- 1) владение на праве собственности или ином законном основании источниками тепловой энергии с наибольшей совокупной установленной тепловой мощностью в границах зоны деятельности единой теплоснабжающей организации или тепловыми сетями, к которым непосредственно подключены источники тепловой энергии с наибольшей совокупной установленной тепловой мощностью в границах зоны деятельности единой теплоснабжающей организации;
- 2) размер уставного (складочного) капитала хозяйственного товарищества или общества, уставного фонда унитарного предприятия должен быть не менее остаточной балансовой стоимости источников тепловой энергии и тепловых сетей, которыми указанная организация владеет на праве собственности или ином законном основании в границах зоны деятельности единой теплоснабжающей организации. Размер уставного капитала и остаточная балансовая стоимость имущества определяются по данным бухгалтерской отчётности на последнюю отчётную дату перед подачей заявки на присвоение статуса единой теплоснабжающей организации.
- 6. В случае если в отношении одной зоны деятельности единой теплоснабжающей организации подано более одной заявки на присвоение соответствующего статуса от лиц, соответствующих критериям, установленным настоящими Правилами, статус единой теплоснабжающей организации присваивается организации, способной в лучшей мере обеспечить надёжность теплоснабжения в соответствующей системе теплоснабжения.

Способность обеспечить надёжность теплоснабжения определяется наличием у организации технических возможностей и квалифицированного персонала по наладке, мониторингу, диспетчеризации, переключениям и оперативному управлению гидравлическими режимами, и обосновывается в схеме теплоснабжения.

- 7. В случае если в отношении зоны деятельности единой теплоснабжающей организации не подано ни одной заявки на присвоение соответствующего статуса, статус единой теплоснабжающей организации присваивается организации, владеющей в соответствующей зоне деятельности источниками тепловой энергии и (или) тепловыми сетями, и соответствующей критериям настоящих Правил.
- 8. Единая теплоснабжающая организация при осуществлении своей деятельности обязана:
- а) заключать и надлежаще исполнять договоры теплоснабжения со всеми обратившимися к ней потребителями тепловой энергии в своей зоне деятельности;
- б) осуществлять мониторинг реализации схемы теплоснабжения и подавать в орган, утвердивший схему теплоснабжения, отчеты о реализации, включая предложения по актуализации схемы теплоснабжения;
- в) надлежащим образом исполнять обязательства перед иными теплоснабжающими и теплосетевыми организациями в зоне своей деятельности;
- г) осуществлять контроль режимов потребления тепловой энергии в зоне своей деятельности.

В соответствии с п. 4 Правил организации теплоснабжения в Российской Федерации, утверждённых постановлением Правительства РФ № 808 от 08.08.2012 г., в проекте схемы теплоснабжения должны быть определены границы зон деятельности единой теплоснабжающей организации (организаций). Границы зоны (зон) деятельности единой теплоснабжающей организации (организаций) определяются границами системы теплоснабжения.

В данном случае, когда на территории поселения организованы и действуют две системы теплоснабжения, уполномоченные органы вправе:

- определить единые теплоснабжающие организации в каждой из систем теплоснабжения, расположенных в границах поселения.

Подробное описание зон деятельности теплоснабжающих организаций приведено в Главе 1 "Существующее положение в сфере производства, передачи и потребления тепловой энергии для целей теплоснабжения" схемы теплоснабжения Масальского сельсовета Локтевского района Алтайского края.

В настоящее время МБУ «ЖКХ» является единственной теплоснабжающей организацией на территории Масальского сельсовета, а также отвечает всем требованиям критериев по определению единой теплоснабжающей организации, а именно:

- владение на праве собственности или ином законном основании источниками тепловой энергии с наибольшей совокупной установленной тепловой мощностью в границах зоны деятельности единой теплоснабжающей организации или тепловыми сетями, к которым непосредственно подключены источники тепловой энергии с наибольшей совокупной установленной тепловой мощностью в границах зоны деятельности единой теплоснабжающей организации.

В управлении МБУ «ЖКХ» находятся тепловые сети и одна котельная.

Статус единой теплоснабжающей организации рекомендуется присвоить МБУ «ЖКХ», имеющей технические и ресурсные возможности для обеспечения надёжного теплоснабжения потребителей тепловой энергией МО Масальский сельсовет Локтевского района Алтайского края.

Библиография

Постановление Правительства РФ от 22 февраля 2012 г. № 154

- 1. Техническое задание на разработку схемы теплоснабжения МО Масальский сельсовет Локтевского района Алтайского края
- 2. Методические рекомендации по разработке схем теплоснабжения, утверждены совместным Приказом Минэнерго России и Минрегиона России от 29 декабря 2012 г. № 565/667
 - 3. Федеральный закон РФ от 27 июля 2010 г. № 190-ФЗ "О теплоснабжении"
- 4. Федеральный закон РФ от23 ноября 2009 г. N 261-Ф3 в ред. Федерального закона от 27.07.2010 N 237-Ф3 "Об энергосбережении и о повышении энергетической эффективности...."
- 5. Правила технической эксплуатации тепловых энергоустановок, утверждены Приказом Минэнерго РФ от 24 марта 2003 г. № 115,зарегистрировано в Минюсте РФ 2 апреля 2003 г. № 4358
- 6. Методика определения нормативных значений показателей функционирования водяных тепловых сетей коммунального теплоснабжения. М. Роскоммунэнерго
- 7. Методические рекомендации по регулированию отношений между энергоснабжающей организацией и потребителями /под общей редакцией Б.П. Варнавского/. М.: Новости теплоснабжения, 2003.
- 8. Манюк В.В.и др. Наладка и эксплуатация водяных тепловых сетей. Справочник М-ва., 1988 г.
- 9. Самойлов Е.В. Диагностика трубопроводов тепловых сетей как альтернатива летним опрессовкам. ЖКХ, Журнал руководителя и гл. бухгалтера.
- 10. Папушкин В.Н. Радиус теплоснабжения. Хорошо забытое старое. Новости теплоснабжения, № 9 2010 г. стр. 18-23
- 11. Николаев А.А. Справочник проектировщика Проектирование тепловых сетей. Справочник Москва 1965 г.
- 12. Приказ Минрегиона России от 26.07.2013 № 310 "Об утверждении Методических указаний по анализу показателей, используемых для оценки надежности систем теплоснабжения"

ПРИЛОЖЕНИЕ А (справочное)

Зоны действия систем теплоснабжения на территории Масальского сельсовета Локтевского района Алтайского края

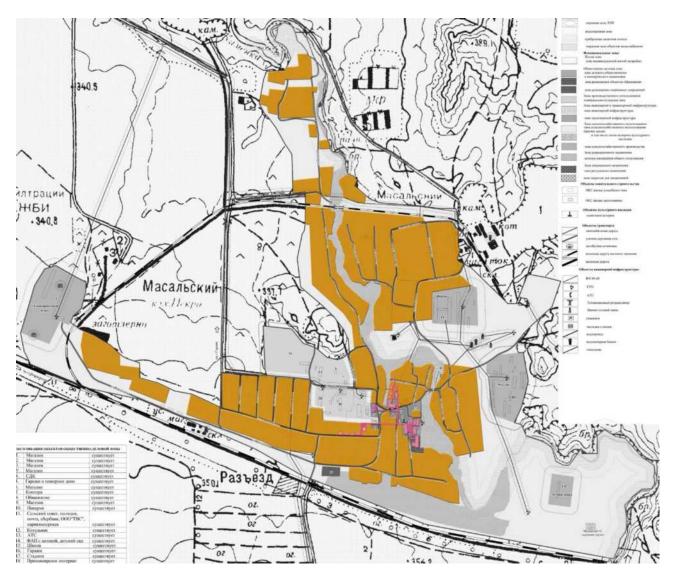


Рисунок A - Зоны действия систем теплоснабжения на территории п. Масальский Масальского сельсовета Локтевского района Алтайского края

ПРИЛОЖЕНИЕ Б (справочное) Зоны действия источников тепловой энергии МБУ «ЖКХ»

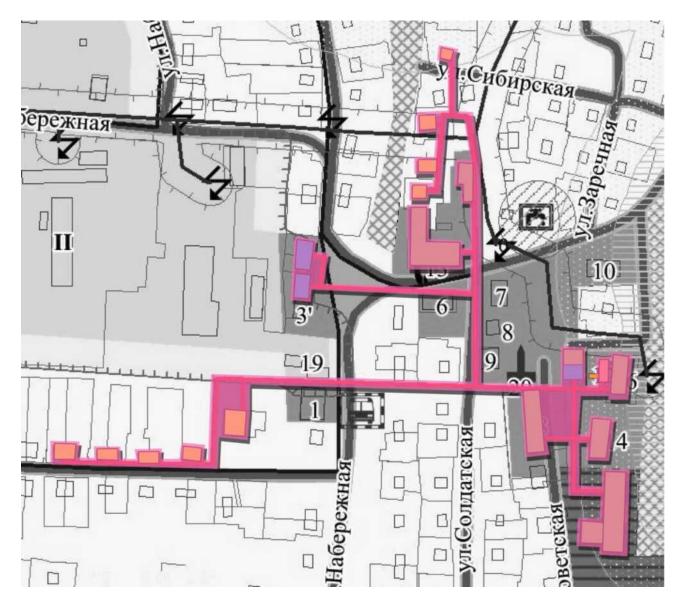


Рисунок Б - Зона действия котельной п. Масальский МБУ «ЖКХ» на территории п. Масальский Масальского сельсовета Локтевского района Алтайского края

і Показатель надёжности электроснабжения источников тепла (K₃) Показатель характеризуется наличием или отсутствием резервного электропитания:

- при наличии резервного электроснабжения $K_9 = 1,0;$
- при отсутствии резервного электроснабжения при мощности источника тепловой энергии *(Гкал/ч):*
 - до 5,0: $K_3 = 0.8$;
 - 5,0 20: $K_9 = 0.7$;
 - свыше 20: $K_9 = 0.6$.